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Abstract 

While most commercial Concentrated Solar Power plants rely on surface absorption of solar 

irradiation to drive a steam turbine (Rankine cycle), there exist several advantages in 

employing gas turbines (Brayton cycle). First, it requires less water to generate electricity; 

second, it leads to higher thermodynamic efficiency (due to the higher temperatures 

required); and third, the air is a non-problematic heat transfer fluid owing to its inert nature 

within the temperature range of interest. 

This Proyecto Fin de Carrera aims to first develop a robust multi-physics numerical 

model for a Small Particle Solar Receiver, one such receiver to drive a gas turbine in 

Concentrated Solar Power plants. This concept is based on employing carbon nanoparticles 

in an air stream to volumetrically absorb highly concentrated solar irradiation and drive a gas 

turbine at temperatures in excess of 1300 K, with the corresponding three advantages 

previously mentioned. The thermo-fluid dynamic modeling of the Small Particle Solar 

Receiver requires solving a system of eight coupled, non-linear integro-partial differential 

equations in six independent variables (three spatial variables, two directional variables and 

wavelength). The solution procedure relies on the coupling of the CFD solver ANSYS 

Fluent to an in-house Monte Carlo Ray Trace software developed in this Proyecto Fin de 

Carrera. On the one hand, ANSYS Fluent is utilized as the mass-, momentum- and energy-

equation solver and requires the divergence of the radiative heat flux, which constitutes a 

source term of the energy equation. On the other hand, the MCRT solver calculates the 

radiation heat transfer in the solar receiver and needs the temperature field to do so. By 

virtue of the coupled nature of the problem, both codes should provide feed-back to each 

other and iterate until convergence. The coupling between ANSYS Fluent and our in-house 

MCRT code is done via User-Defined Functions (UDFs). Both the UDFs and the MCRT 
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were programmed specifically for this Proyecto Final de Carrera and consist of over 12,500 

lines of code. Moreover, they can be used interchangeably for either the two-dimensional 

(axisymmetric) or the three-dimensional version of the CFD solver. 

After developing the mathematical model, setting up the code, validating the software 

and optimizing the coupled solution procedure, the receiver was simulated under fifteen 

different solar irradiation and mass flow rate cross combinations in an effort to assess the 

potential of this new technology to generate electricity. Among other results, the behavior of 

the receiver at different times of the day and the optimum mass flow rate as a function of the 

solar thermal input are presented. On an average day, the thermal efficiency of the receiver 

is found to be over 89% and the outlet temperature over 1250 K at all times from 7:30 AM 

to 4:00 PM (Albuquerque, USA) by properly adapting the mass flow rate. The origin of the 

losses and how to improve the efficiency of the Small Particle Solar Receiver are discussed 

as well. 

A multidisciplinary design optimization is finally conducted in order to maximize the 

efficiency, reduce the initial and operating costs, increase the lifespan of the different 

components and, in turn, minimize the generation cost of the electricity. The design space 

consists of the geometry of the receiver, the geometry of the window, the radiative 

properties of the walls and the direction of the fluid flow with respect to the concentrated 

solar irradiation. The constraints are based on material limits (stresses and temperatures), the 

space available on the top of the tower and other technical issues; though some of them are 

imposed via a penalty method. The design space is explored via parametric study and a 

multidisciplinary approach is adopted. The cocurrent flow direction, aluminum oxide walls, 

a 45º spherical-cap window and the so-called Design 2 showed the best compromise 

between thermal efficiency and wall temperature. Moreover, the particles were proved to be 

fully oxidized prior to exiting the solar receiver and the outlet air ready to drive a gas turbine 

at high temperature, which is the ultimate goal of the Small Particle Solar Receiver. Finally, 

several ideas and considerations to further improve the design are presented and discussed as 

well. 
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“Do not go where the path may lead; go instead 

where there is no path and leave a trail”, 
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Nomenclature 

Latin Letters 

  = Area, m
2
. 

= Surface area of the carbon particles, m
2
/particle. 

= Absorptivity of the window. 

  = Radius of the carbon particles, m. 

= Heating rate, K/s. 

= Radius of the spherical cap window. 

    = Arrhenius coefficient. 

  = Correction factor for the drag force at high Knudsen number. 

   = Specific heat at constant pressure, J-kg
-1

-K
-1

. 

   = Size parameter of an ellipsoidal window (             
 ), m. 

     = Size parameter of the ellipsoid that limits some fluid cells of Type 3 on the    

face, m. 

     = Size parameter of the ellipsoid that limits some fluid cells of Type 3 on the    

face, m. 

  = Diameter, m. 

   = Hydraulic diameter, m. 

  
  = Positive portion of the cross-diffusion term. 

  = Carbon particle diameter, μm. 

= Thickness of the window, m. 

  = Emissive power, W/m
2
. 

= Activation energy, J. 

= Expected value of a random variable. 

   = Blackbody emissive power, W/m
2
. 

   = Exponential integral of order n (      ∫          
 

 
) 

 ̂ = Unit vector. 

   = Energy of the ray number  , W. 

  = Test statistic in a hypothesis testing. 

  ,    = Blending functions. 

   = Critical value of the test statistic in a hypothesis testing. 

  = Probability Density Function. 

= Equation of  surface. 
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   = Specular fraction. 

  = Dual objective function or dual objective functional. 

  = Objective function or objective functional. 

   = Performance function of the objective value  . 

  = Additional restrictions of the design optimization problem (in vector form.) 

  = Specific enthalpy, J-kg
-1

. 

     = Exterior convective heat transfer coefficient (from the outer surface of the receiver 

to the ambient), W-m
-2

-K
-1

. 

 ̂    = Effective exterior convective heat transfer coefficient (for modeling purposes), W-

m
-2

-K
-1

. 

     = Interior convective heat transfer coefficient (from the inner surface of the walls to 

the air-particle mixture), W-m
-2

-K
-1

. 

  = First fundamental form. 

  = Second fundamental form. 

= Total interpolated radiative source term, W. 

  = Turbulence intensity. 

   = Inlet temperature, K. 

  = Radiative intensity, W-m
-2

-sr
-1

. 

= Axial index of the MCRT mesh. 

   = Blackbody intensity, W-m
-2

-sr
-1

. 

     = Intensity on the inner surface of the window coming from the heliostat field, W-m
-

2
-sr

-1
. 

  = Radial index of the MCRT mesh. 

  = Gaussian curvature. 

   = Mathematical domain of the Monte Carlo cell  . 

  = Turbulence kinetic energy, m
2
-s

-2
. 

= Thermal conductivity, W-m
-1

-K
-1

. 

= Low-scale thermal conductivity (Kinetic Theory value), W-m
-1

-K
-1

. 

= Imaginary part of the complex index of refraction (absorptive index). 

= Azimuthal index of the MCRT mesh. 

   = Boltzmann constant, J/K. 

   = Knudsen number. 

  = Length, m. 

= Thickness of the layer of the walls in which the source term is supposed to be 

uniformly distributed (Eq. 4-2 and Appendix H), m. 

= Integro-differential operator of the Radiative Transfer Equation. 
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   = Entrance length, m. 

      =    functions in     ,    , i.e. p-integrable functions in  . 

   = Adjoint operator of the Radiative Transfer Equation. 

  = Number of levels of a parametric study. 

= Macroscale of turbulence, m. 

= Objective value in a Monte Carlo simulation. 

= Arc-length parameter, m. 

 ̂ = Estimator of the objective value   in a Monte Carlo simulation. 

   = Distance to the closest face of the Monte Carlo cell through the prolongation of 

the ray. 

   = Distance to absorption, m. 

   
 = Distance to scattering, m. 

  = Mass per carbon particle, kg/particle. 

= Number of strata when applying stratified sampling in a Monte Carlo simulation. 

 ̇ = Mass flow rate, kg/s. 

 ̇   = Rate of oxidation of carbon particles per unit time and unit particle surface area, 

kg-s
-1

-m
-2

. 

  = Molecular weight, kg-m
-3

. 

= Number of cells of the Monte Carlo mesh. 

  = Number of rays traced. 

= Number of parallel threads. 

= Carbon particles per unit volume, particles/m
3
. 

= Normal distribution. 

   = Number of elements in the sample of the stratum   in a stratified Monte Carlo 

simulation. 

  = Real part of the complex index of refraction. 

= Number of factors (variables) of a parametric study. 

 ̂ = Outward unit normal vector to the boundary of the solar receiver. 

  = Portion of code susceptible to parallelization (measured as the fraction of CPU 

time before the parallelization.) 

   = Generation of turbulence kinetic energy due to mean velocity gradients, kg-m
-1

-s
-

3
. 

  = Restrictions of the design optimization problem due to material limits (in vector 

form.) 

  = Thermodynamic pressure, Pa. 

   = Probability that an element belongs to the stratum   in a stratified Monte Carlo 

simulation. 
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    = Operating thermodynamic pressure, Pa. 

   = Partial pressure of the specie  , Pa. 

  
    = Net radiative energy absorbed by the Monte Carlo cell  number  , W. 

    
      = Solar thermal input, W. 

   = Orthogonal coordinates (       ) 

  
  = Radiative heat flux vector, W-m

-2
. 

   = Radiative source term on the walls when distributing the energy over a thickness   

(   
  

 
), W/m

3
. 

   = Radiative heat flux on the wall, W-m
-2

. 

  = Universal gas constant, J-mol
-1

-K
-1

. 

= Radius, m. 

= Reflectivity of the window. 

= Cumulative Distribution Function (CDF). 

   = Radial coordinate of the maximum axial position of a conical Monte Carlo cell (  

from East). 

   = Maximum radial coordinate of a spherical/ellipsoidal Monte Carlo cell (  from 

North). 

= Maximum radial coordinate of a fluid of Type 3 Monte Carlo cell (  from North). 

    = Radial coordinate of the edge with the maximum radial and maximum axial 

position of a three-dimensional Monte Carlo cell (  from North,   from East). 

    = Radial coordinate of the edge with the maximum radial and minimum axial 

position of a three-dimensional Monte Carlo cell (  from North,   from West). 

   = Minimum radial coordinate of a spherical/ellipsoidal Monte Carlo cell (  from 

South). 

= Minimum radial coordinate of a fluid of Type 3 Monte Carlo cell (  from South). 

    = Radial coordinate of the edge with the minimum radial and maximum axial 

position of a three-dimensional Monte Carlo cell (  from South,   from East). 

    = Radial coordinate of the edge with the minimum radial and minimum axial 

position of a three-dimensional Monte Carlo cell (  from South,   from West). 

   = Radial coordinate of the minimum axial position of a conical Monte Carlo cell (  

from West). 

   = Random number for the variable  . 

  = Radial coordinate of a cylindrical or spherical coordinate system, m. 

= Ratio between principal axes of the ellipsoidal window. 

= Ratio between the average temperature of the walls using a thickness   when 

distributing the radiative source term and the actual temperature of the inner 

surface of the wall,                    ⁄ . 
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   = Maximum radial coordinate of a Monte Carlo cell (  from North,         ). 

   = Minimum radial coordinate of a Monte Carlo cell (  from South,         ). 

    = Reynolds number based on the diameter. 

  = Modulus of the mean rate-of-strain tensor. 

= Expected speedup of the parallelization. 

= Divergence of the radiative heat flux (        ). Only for the three-

dimensional cells in Eq. 5-2 and Appendix I), W/m. 

= Radiative heat flux through the walls (         ̂). Only for the two-

dimensional cells in Eq. 5-2), W. 

  = Path length, m. 

   = Sample variance. 

 ̂ = Direction vector. 

 ̂  = In-scattering direction vector. 

  = Thermodynamic temperature, K. 

= Transmissivity of the window. 

  = Transformation matrix. 

      
  = Corrected inlet temperature (considering the radiative source term on the inlet 

surface) before the possible clipping. 

  = Time, s. 

= Parameter of the equation of a line, m. 

   = Initial time, s. 

   = Actual wall thickness, m. 

 ̂  = Wall thickness of the CFD model, m. 

   = CPU time of a Monte Carlo simulation. 

  = Bulk velocity, m/s. 

  = Set of random numbers required to trace a ray using the Monte Carlo method. 

  = Velocity, m/s. 

  = Fluid flow and radiative solution (in compact form.) 

   = Velocity vector, m/s. 

   = Kolmogorov velocity scale, m/s. 

  = Volume, m
3
. 

 ̆  = Volume of the  th
 eighth part of a three-dimensional Monte Carlo cell (used in 

Appendix I). 

  = Arbitrary vector. 

= Unit vector in the direction in which the ray is travelling. 
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   = Current location of the ray (     ). 

  = First Cartesian coordinate. 

   = Cartesian coordinates, m. 

  = Set of variables necessary to trace a ray using the Monte Carlo method and 

determined statistically using random numbers and CDFs. 

  = Distance from a flow field point to the nearest wall, m. 

= Second Cartesian coordinate, m. 

   = Distance between the center of the spherical cap window and the origin of the 

global Cartesian coordinate system. 

   = Maximum axial coordinate of a two-dimensional Monte Carlo cell (  from East). 

= Maximum axial coordinate of a fluid of Type 2 Monte Carlo cell (  from East). 

   = Axial coordinate of the maximum radial position of a spherical/ellipsoidal Monte 

Carlo cell (  from North). 

    = Axial coordinate of the edge with the maximum radial and maximum axial 

position of a three-dimensional Monte Carlo cell (  from North,   from East). 

    = Axial coordinate of the edge with the maximum radial and minimum axial 

position of a three-dimensional Monte Carlo cell (  from North,   from West). 

   = Axial coordinate of the minimum radial position of a spherical/ellipsoidal Monte 

Carlo cell (  from South). 

    = Axial coordinate of the edge with the minimum radial and maximum axial 

position of a three-dimensional Monte Carlo cell (  from South,   from East). 

    = Axial coordinate of the edge with the minimum radial and minimum axial position 

of a three-dimensional Monte Carlo cell (  from South,   from West). 

   = Minimum axial coordinate of a two-dimensional Monte Carlo cell (  from West). 

= Minimum axial coordinate of a fluid of Type 2 Monte Carlo cell (  from West). 

  = Third Cartesian coordinate or axial coordinate of a cylindrical coordinate system. 

   = Maximum axial coordinate of a Monte Carlo cell (  from East,         ). 

   = Minimum axial coordinate of a Monte Carlo cell (  from West,         ). 

Greek Letters 

  = Vector of design variables. 

  = Absorptivity. 

= Accommodation coefficient. 

= Level of significance in a hypothesis testing. 

= Angle between the generatrix and the axis of symmetry. 

= Shape parameter of an ellipsoidal window (             
 ). 

   = Shape parameter of the ellipsoid that limits some fluid cells of Type 3 on the    

side. 
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   = Shape parameter of the ellipsoid that limits some fluid cells of Type 3 on the    

side. 

  = Lipschitz boundary of the air-particle mixture domain (    ). 

   = Difference between the maximum and the minimum   coordinate in a Monte 

Carlo cell (       ). 

    = Kronecker delta. 

  = Hemispherical emissivity. 

= Dissipation rate of turbulent kinetic energy, m
2
/s

3
. 

   = Directional emissivity. 

  = Mean free path, m. 

  = Kolmogorov length scale, m. 

  = Zenithal coordinate of a spherical coordinate system, rad. 

     = Cap angle, rad. 

   = Zenith angle of the maximum radial position of a spherical Monte Carlo cell (  

from North. The origin of the spherical coordinate system is located in the center 

of the sphere), rad. 

   = Zenith angle of the minimum radial position of a spherical Monte Carlo cell (  

from South. The origin of the spherical coordinate system is located in the center 

of the sphere), rad. 

  = Planck-mean absorption coefficient, m
-1

. 

  = Wavelength, μm. 

  = Molecular dynamic viscosity, kg-s
-1

-m
-1

. 

= Mean. 

   = Turbulent eddy viscosity, kg-s
-1

-m
-1

. 

   = Three-dimension Lebesgue measure of a set. 

  = Kinematic viscosity, m
2
-s

-1
. 

   = Kinematic turbulent viscosity, m
2
-s

-1
. 

  = Particle size parameter. 

  = Density, kg-m
-3

. 

= Reflectivity of an interface. 

   = Reflectivity of the parallel component of an electromagnetic wave when it reaches 

an interface. 

   = Reflectivity of the perpendicular component of an electromagnetic wave when it 

reaches an interface. 

    = Bidirectional reflection function, sr
-1

. 

  = Stefan-Boltzmann constant, W/m
2
-K

4
. 
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= Variance. 

= Covariance. 

   = Turbulent Prandtl number for  . 

   = Particle hard shell diameter, m. 

   = Scattering coefficient, m
-1

. 

   = Turbulent Prandtl number for  . 

  = Transmissivity of an interface. 

= Optical thickness. 

= Time constant, s. 

    = Viscous stress tensor, Pa. 

   = Transmissivity of the parallel component of an electromagnetic wave. 

   = Transmissivity of the perpendicular component of an electromagnetic wave. 

   = Kolmogorov time scale, s. 

  = Scattering phase function. 

   = Dimensionless emissive power. 

         
     

    
  ⁄ , where    and    are the temperature of the first and 

second plate, respectively. 

  = Mass loading, kg/m
3
. 

= Fluid flow variable. 

= Azimuthal coordinate of a cylindrical or spherical coordinate system, rad. 

  = Volume fraction. 

  = Adjoint variables. 

  = Interpolation function of the radiative source term, W/m
3
. 

  = Stream function, m
2
/s. 

  = Solid angle, sr. 

= Air-particle mixture domain (with Lipschitz boundary.) 

  = Specific dissipation rate, s
-1

. 

= Parameter related to the way the emitted rays are distributed throughout the Monte 

Carlo mesh,        . 

Manuscripts Letters 

      = n-times differentiable functions in     ,    . 

  = System of governing equations of the fluid flow and radiative heat transfer (in 

vector form.) 

  = Order of magnitude. 

= Average case performance. 
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  = Performance figure of merit of the MCRT method. 

  = Combined convection-conduction thermal resistance per unit area of the walls of 

the solar receiver, K-m
2
-W

-1
. 

Subscripts 

  = Inlet conditions of the particles. 

= Conditions of the air at the outlet of the recuperator or the compressor (for 

recuperated and non-recuperated cycles, respectively). 

= Current location of a ray. 

  = Incident ray. 

= Minimum axial position of a conical Monte Carlo cell (in Appendix E). 

= Left plate or inner cylinder in the Monte Carlo method validation (Appendix F). 

=   ,   ,    vertex of a three-dimensional Monte Carlo cell. 

   =   ,    position of a three-dimensional Monte Carlo cell. 

   =   ,    position of a three-dimensional Monte Carlo cell. 

  = Refracted ray. 

= Maximum axial position of a conical Monte Carlo cell (in Appendix E). 

= Right plate or outer cylinder in the Monte Carlo method validation (Appendix F). 

=   ,   ,    vertex of a three-dimensional Monte Carlo cell. 

   =   ,    position of a three-dimensional Monte Carlo cell. 

   =   ,    position of a three-dimensional Monte Carlo cell. 

  =   ,   ,    vertex of a three-dimensional Monte Carlo cell. 

  =   ,   ,    vertex of a three-dimensional Monte Carlo cell. 

  =   ,   ,    vertex of a three-dimensional Monte Carlo cell. 

  =   ,   ,    vertex of a three-dimensional Monte Carlo cell. 

  =   ,   ,    vertex of a three-dimensional Monte Carlo cell. 

  =   ,   ,    vertex of a three-dimensional Monte Carlo cell. 

    = Air-particle mixture. 

    = Ambient. 

   
 = Carbon dioxide (CO2). 

   = Critical value for which the particles are assumed to be fully oxidized. 

  = Emission. 

    = Effective. 

  = Global coordinate system. 

     = Historical value. 

  = Cell number   of the Monte Carlo mesh. 
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=  -th component of a vector. 

= Incident. 

      = Inlet surface of the air-particle mixture. 

  = Local coordinate system. 

    = Maximum. 

    = Minimum. 

    = New cell of the Monte Carlo mesh in which the ray is entering. 

    = Current cell of the Monte Carlo mesh in which the ray is located. 

   = Outlet tube. 

       = Outlet surface of the air-particle mixture. 

   = Conditions at which the particles fully oxidize. 

  = Particle. 

  = Reflected. 

    = Receiver. 

    = Reference. 

    = Relative. 

  = Wall. 

    = Window. 

  = Minimum  - and mid  - position of a three-dimensional Monte Carlo cell.  

  = Mid  - and mid  - position of a three-dimensional Monte Carlo cell. 

  = Maximum  - and mid  - position of a three-dimensional Monte Carlo cell. 

  = Mid  - and minimum  - position of a three-dimensional Monte Carlo cell. 

  = Mid  - and maximum  - position of a three-dimensional Monte Carlo cell. 

  = Spectral. 

  = Environment. 

Superscripts 

   = Bidirectional. 

  = Numerical value that take the different components of   after picking the 

corresponding random number (i.e.,    is the value of   chosen after picking the 

random number   ). 

= Adjoint operator. 

   = Most positive  -face of a Monte Carlo cell (       ) 

   = Least positive  -face of a Monte Carlo cell (       ) 
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 = Iteration number  . 

= Ray number   of a Monte Carlo iteration. 

  = Transpose. 

Accents and other symbols 

       = Largest integer smaller than  . 

       = Smallest integer greater than  . 

̅  = Reynolds time average. 

= Reynolds-averaged part. 

= Closure of a region. 

̃  = Dimensionless variable for the interpolation scheme of the radiative source term. 

̇  = Time derivative. 

  = Del operator acting as gradient. 

   = Del operator acting as divergence. 

〈 〉 = Arithmetic mean. 

| | = Determinant. 

‖ ‖  = Euclidean norm. 

  

  
 = Jacobian of the transformation       . 

Acronyms 

CDF = Cumulative Distribution Function 

CFD = Computational Fluid Dynamics 

DNS = Direct Numerical Simulation 

GPU = Graphics Processing Unit 

HTF = Heat Transfer Fluid 

LES = Large Eddy Simulation 

LTE = Local Thermodynamic Equilibrium 

MCRT = Monte Carlo Ray Trace 

MDO = Multidisciplinary Design Optimization 

N-S = Navier-Stokes 

ODE = Ordinary Differential Equation 

OTFA = Optically Thin Fluctuation Approximation 

PDE = Partial Differential Equation 

RANS = Reynolds-Averaged Navier Stokes 
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RNS = Random Number Generator 

RTE = Radiative Transfer Equation 

SST = Shear Stress Transport 

TRI = Turbulence-Radiation Interactions 

UDF = User-Defined Function 

URF = Under-Relaxation Factor 
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Chapter 1 

Introduction 

This first chapter introduces the context in which this Proyecto Fin de Carrera is developed 

by gradually approaching the topic under research. First, we present a brief introduction to 

solar energy and its importance for the mankind’s future. Then we focus on Concentrated 

Solar Power (CSP), probably the most promising way of producing electricity from solar 

energy. Finally, the Small Particle Solar Receiver concept is presented, as well as a brief 

description of its advantages and the interest of the project. 

1.1. Solar Energy as a solution towards sustainable development 

For many years human beings have utilized the resources that nature has put at their disposal 

to satisfy their energy requirements without worrying about the impact that behaviour could 

cause to the planet’s future. However, since a group of scientists warned for the first time of 

the possible effects of human activity on the climate a few decades ago, many studies have 

been conducted to assess and predict global warming [1-5]. Unfortunately, a number of 

these scientific predictions have come true with alarming accuracy during recent years. For 

example, David Frame –from the Victoria University of Wellington– and Dáithí Stone –

from the Lawrence Berkeley National Laboratory– have recently confirmed [6] that the 

predictions made by a team of scientists in December 1990 about the temperature rising due 

to CO2 emissions [7,8] were right. The accuracy of these estimations is even more 

sensational if we take into account that many recent events were unknown in 1990, such as 

the Mont Pinatubo Eruption, the sudden reduction of greenhouse gases emissions in Russia 

or the emergence of China as an industrial giant. 

Besides global warming, it is a reality that fossil fuels are non-renewable energy 

resources and their reserves will run out in a more or less near future. Therefore, the dire 

need to find a solution for the future of sustainable energy is apparent. We must act in 

advance and spare no effort to avoid a traumatic transition towards sustainable energy 

sources, which, for the time being, are still far from being widely applied. 

To solve these two problems, it is necessary to reduce reliance on fossil fuels and 

introduce new, more efficient sustainable forms of energy in order to diminish the 

emissions, preserve the environment and guarantee the planet’s future. Facing and giving a 

solution to this problem constitutes one of the mankind’s most urgent and important 

challenges, and requires mutual cooperation between political institutions and scientific 

community. From the technological point of view, there exist several fields in which we 

must make an urgent effort: solar energy, wind power, new generation biofuels, 
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thermoelectric technologies, energy storage, ocean energy, and so on. Among them, solar 

energy stands out on its own due to its unlimited, free and non-polluting character. 

1.2. Concentrated Solar Power 

Concentrated Solar Power (CSP) is one of two primary technologies to produce electricity 

from solar energy. Roughly speaking, it consists of employing a vast field of mirrors to 

concentrate solar irradiation and heat up a fluid. Then, once the fluid is at high temperature, 

the thermal energy is transformed into electricity through a thermodynamic power cycle 

(heat engine), as in a conventional thermal power plant. 

Among these CSP technologies, there exist several categories: 

- Parabolic Trough 

- Solar Power Tower 

- Dish Stirling 

- Fresnel Reflectors 

While most current commercial CSP plants employ the parabolic trough technology, the 

Solar Power Tower possesses several advantages and is the technology to be employed in 

most of the largest CSP plants in the world (Ivanpah Solar Power Facility [9], Crescent 

Dunes Solar Energy Project in Tonopah [10], etc.), currently under construction. In this 

Solar Power Tower technology the mirrors (called heliostats and numbered in the thousands) 

concentrate the solar irradiation onto the top of a large tower, where the solar receiver is 

located. This solar receiver is the device where the heat transfer fluid (HTF) is heated. For a 

better understanding of this CSP technology, Figure 1 shows an image of the PS10 Solar 

Power Plant, the world’s first commercial Solar Power Tower plant located in Sanlúcar la 

Mayor (Spain). 

 

Figure 1 – PS10 Solar Power Plant (Sanlúcar la Mayor, Spain). 
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An independent study promoted by the World Bank [11] confirms Concentrated Solar 

Power technologies as the most economical way of producing large scale electricity from 

solar energy. Its diagnosis reveals, nevertheless, the CSP plant’s direct capital cost is 

between 2.5 and 3.5 greater than a conventional thermal power plant, and the cost of the 

electricity produced from 2 to 4 times greater. Therefore, it is necessary to make an effort in 

R&D in CSP as it will constitute one of the main future energy sources in the medium- and 

long-term. Indeed, CSP could meet up to 7% of the world’s power needs by 2030 and fully 

one quarter by 2050 [12], upstaging nuclear power and approaching our current global usage 

of coal and gas [13]. 

1.3. Small Particle Solar Receiver 

To date, all central receivers utilized in commercial CSP plants are based on surface 

absorption of solar irradiation on the exterior surface of pipes, which transfer the heat to the 

heat transfer fluid (HTF) flowing inside them. This way the pipes are hotter than the HTF, 

which increases the thermal losses and limits the maximum achievable temperature due to 

materials limits. Moreover, the HTFs employed so far (oils, molten salts) degrade at 

temperatures over 800 K. These two facts limit current CSP plants to operate Rankine cycles 

at temperatures below 800 K, which reduces the overall efficiency of CSP plants. Of course, 

this limitation could be overcome and higher overall efficiencies could be achieved if new 

receivers capable of operating at higher temperature were developed. 

Another challenge faced by current CSP plants is the large amount of cooling water 

required for Rankine cycle operation [14], which is a major concern for new solar power 

plants because the locations with greatest solar potential are often located in dry regions 

already subjected to water shortages. Some current central receiver power plants are forced 

to use dry cooling methods, which add to the overall cost and decrease the efficiency of the 

system. Again, this limitation could be fixed if new technology solar receivers were 

developed. 

One such receiver able to overcome the two previous limitations (produce higher outlet 

temperature and very significantly reduce the water requirements), first proposed by Hunt in 

1979 [15,16], is the Small Particle Solar Receiver. This concept is based on employing a 

mixture of air and carbon nanoparticles to volumetrically absorb concentrated solar 

irradiation. It is essentially a large, pressurized vessel with a window (through which the 

concentrated solar irradiation enters) and an air-particle mixture flowing inside, as 

schematically depicted in Figure 2. Since solar irradiation is absorbed volumetrically by the 

air-particle mixture, the walls are at lower temperature and do not limit the operating 

conditions anymore. Moreover, the air is a non-problematic heat transfer fluid owing to its 

inert nature within the temperature range of interest. Therefore, it is possible to produce 

outlet temperatures in excess of 1300 K, with the corresponding increase in thermodynamic 

efficiency. On account of the high temperature, the carbon particles oxidize prior to exiting 
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the solar receiver [17] and the outlet air flow is fully ready (no particles, high temperature) 

to drive a gas turbine (Brayton cycle). In addition, gas turbines are generally easier to 

operate than steam turbines, and are expected to withstand more stops and starts. As such, 

they are better suited to the intermittent nature of solar energy, which can require nightly 

shutdown. The Small Particle Solar Receiver, in turn, would lead to more flexible operation, 

would exceedingly reduce the water requirements and would produce higher thermodynamic 

efficiency compared to lower temperature liquid cooled receivers. 

 

Figure 2 – Schematic representation of the Small Particle Solar Receiver (yellow arrows: solar 

irradiation; blue arrows: air-particle mixture inlet; red arrows: air-particle mixture outlet). 

The Small Particle Solar Receiver can also accommodate higher incident flux levels 

than any existing technology, which reduces the size of the solar receiver with the 

corresponding cost and thermal losses reduction. Furthermore, the Small Particle Solar 

Receiver concept is not limited only to electricity generation. The high incident flux levels 

and the intimate mixing between gas and particles offer many possibilities for solar 

chemistry as well [18]. 

1.4. Scope and Objective of this Proyecto Fin de Carrera 

Previous work conducted by our group [19,20] was concerned about developing a 

preliminary numerical model for the Small Particle Solar Receiver with the unique purpose 

of analyzing general trends, such as how efficiency varies when modifying the air-particle 

mixture inlet conditions, the mass flow rate, etc. However, these previous models have 

several limitations: 
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1. They were two-dimensional (axisymmetric) models and three important effects couldn’t 

be modeled. First, incoming solar irradiation is actually non-axisymmetric
1
; second, 

gravity forces –which are non-negligible– are non-axisymmetric either; and third, the 

fluid flow is highly turbulent and three-dimensional turbulent flow effects do occur, 

especially in the recirculation zone prior to entering the outlet tube. 

2. A simplified model for the incoming intensity from the heliostat field was employed: 

The directional dependence was supposed to be uniformly distributed over a certain 

solid angle, and the radial distribution of intensity was assumed uniform (or Gaussian) 

over the window. 

3. Only cylindrical receivers could be simulated. This didn’t allow optimizing the design 

of the receiver, since curved geometries are expected to increase the efficiency and 

reduce the wall temperature (see Section 7.2). 

4. The window was radiatively non-participating (i.e., it was a simple transparent aperture 

without glazing) and flat (which is non-realistic since a curved geometry is required to 

withstand the mechanical loading due to the pressurized air inside the receiver.) 

5. The outlet tube of the air-particle mixture was either not present [19] or transparent as 

for the radiation heat transfer [20]. 

6. The simulation time was extremely high even though it was only a two-dimensional 

model. 

Recent funding was provided to our group by the U.S. Department of Energy through 

the SunShot Initiative under the Award #DE-EE0005800 to design (by March 2014), build 

and test in the National Solar Thermal Test Facility (Albuquerque, NM, USA) a 5 MWth 

Small Particle Solar Receiver. In order to design the receiver, a new, accurate and flexible 

multi-physics solver is required. The development and validation of such software is the first 

objective of this Proyecto Fin de Carrera. While the main features of the new code are 

thoroughly discussed in Chapters 3 (Radiation Heat Transfer), 4 (Fluid Dynamics) and 5 

(coupling between both solvers), it is convenient to briefly introduce them at this point: 

1. The model is three-dimensional so that, for the first time, it is possible to model and 

analyze the three previously mentioned effects. 

2. Any axisymmetric geometry for the solar receiver can be modeled (rather than only 

right-cylindrical receivers). 

                                                           
1
 Among other things, this implies that wall temperatures cannot be accurately predicted in a 2-D model, a 

significant design constraint. 
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3. The software is coupled to a 3-D heliostat field and window model developed by Mecit 

[21,22], which provides the actual spatial, directional and wavelength dependence of the 

concentrated solar intensity. Hence, it is possible to simulate the receiver at different 

times and days. 

4. The outlet tube participates in the radiation heat transfer, i.e., it is not transparent 

anymore. 

5. The window participates in the radiation heat transfer as well by emitting radiation and 

by absorbing/reflecting/transmitting the incident irradiation. Three different window 

geometries can be simulated: flat, ellipsoidal, or a spherical cap. 

6. Non-uniform meshes are utilized to improve the accuracy of the radiative solution. 

7. The CPU time has been dramatically diminished thanks to a combination of different 

strategies: Variance reduction techniques (stratified sample, antithetic random 

numbers), efficient programming, and the availability of different Monte Carlo Ray 

Trace methods (collision-based and pathlength-based). See Sections 3.7.1, 3.7.3 and 

3.7.2, respectively, for further discussion. 

8. Others: Several effects that used to contribute to the energy imbalance in the previous 

model [20] have been fixed, different optical properties are allowed for each wall, 

additional post-processing information is provided and the code was programmed to 

facilitate an eventual parallelization and coupling it to an oxidation model. 

In order to achieve the improvements described above, over 12,500 lines of code in 

FORTRAN and C are required. This software is flexible, accurate and comprehensive 

enough to be employed not only as a general purpose simulation tool, but also as a design 

and optimization tool. The latter is of the upmost importance in the highly competitive 

energy market to maximize the efficiency, reduce the initial and operating costs and, in turn, 

reduce the generation cost of the electricity. Hence, the second and third objectives of this 

Proyecto Fin de Carrera are to perform a parametric study of the operating conditions (mass 

flow rate and time of the day) and a multidisciplinary design optimization of the Small 

Particle Solar Receiver, respectively. 

Main Objectives of this Proyecto Fin de Carrera 

1. Develop and validate an accurate and flexible multi-physics solver for a 5MW Small Particle Solar 

Receiver to be built under the U.S. DOE’s SunShot Initiative’s Award #DE-EE0005800. 

2. Perform a parametric study of the operating conditions (time of the day and mass flow rate) in order to 

assess the electric generation possibilities of the Small Particle Solar Receiver. 

3. Conduct a multidisciplinary design optimization of the Small Particle Solar Receiver with the ultimate 

goal of increasing the efficiency, reducing the initial and operating costs and, in turn, reducing the 

generation cost of the electricity. 

Table 1 – Main objectives of this Proyecto Fin de Carrera. 
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Chapter 2 

Problem Statement and Model Overview 

The purpose of this Chapter is to illustrate the exceedingly complicated nature of the 

problem to be addressed, namely the fluid flow and radiative heat transfer modeling of the 

Small Particle Solar Receiver. First, the mathematical formulation of the problem is 

presented. It involves a system of six coupled, nonlinear, integro-partial differential 

equations with eight unknowns and six independent variables (three spatial, two directional 

and wavelength). Moreover, two additional equations are employed for the turbulence 

modeling and several constitutive relations are required to close the problem as well. Of 

course, such a formidable problem does not admit an analytical solution and must be solved 

numerically. Then, a general overview of the model developed is presented, which will be 

extensively discussed in Chapters 3 (Radiation Heat Transfer), 4 (Fluid Dynamics) and 5 

(coupling between the previous two sub-models). The chapter ends introducing, discussing 

and justifying the two main simplifying hypotheses of the model, namely that the particles 

move as part of the air flow and that they are at local thermodynamic equilibrium with their 

surroundings. 

2.1. Mathematical Formulation of the Problem 

With the only purpose of showing the exceedingly complicated mathematical nature of the 

problem, the system of governing equations, boundary conditions and constitutive relations 

necessary to close the problem are presented. First, the motion of fluids is governed by the 

Navier-Stokes equations
2
, Equations 2-1.a-c. At the high Reynolds numbers present in parts 

of the Small Particle Solar Receiver (        in the outlet tube, for instance), turbulent 

flow occurs. The approach to handle this turbulence that will be employed here is to utilize 

Reynolds decomposition
3
 and Reynolds averaging of the Navier-Stokes equations to obtain 

the Reynolds-Averaged Navier Stokes (RANS) equations. This averaging process introduces 

the so-called Reynolds stresses,   
   

 ̅̅ ̅̅ ̅̅ , which are –in some way– nothing but extra variables 

that require extra equations to close the problem. To do so, turbulence models, which relate 

                                                           
2
 Even though Claude-Louis Navier and George Gabriel Stokes only derived the momentum equation, it is 

sometimes customary to apply the term Navier-Stokes equations to the whole mass-, momentum- and energy- 

system of equations. This is the nomenclature to be employed throughout this Proyecto Fin de Carrera. 

3
 A mathematical technique to separate the average ( ̅) and fluctuating (  ) part of a scalar variable ( ): 

   ̅     

Where, for steady-state flows,  ̅        
 

 
∫       

    

  
 and       ̅. Note that  ̅ is independent of the 

initial time    if the flow field is ergodic, which in general is a good assumption for most turbulent flow fields. 
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the fluctuation terms to mean flow properties and their gradients, are required. In particular, 

the two equation SST     turbulence model (in its modified version published in 2003 

[23], Equations 2-1.d-e) is employed for the Small Particle Solar Receiver modeling, as 

more deeply discussed in Section 4.4 of Chapter 4. 

The radiation heat transfer within a participating medium is governed by the Radiative 

Transfer Equation (RTE), Eq. 2-1.f. For the Small Particle Solar Receiver, as for the vast 

majority of engineering applications, the speed of light is much greater than the time and 

length scales of interest so that the Lagrangian derivative in the general RTE may be 

replaced just by the spatial derivative
4
, leading to the quasi-steady form of the Radiative 

Transfer Equation [24]. While all quantities in the RTE may vary in space and wavelength, 

only the directional dependence has been explicitly indicated in Eq. 2-1.f to simplify 

notation. Note also that Turbulence-Radiation Interactions (TRI) [25-31] have been 

neglected, i.e.      ̅̅ ̅̅ ̅̅ ̅      ̅      ̅  and (       )  
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  [    ̅        ̅ ]  ̅. The former 

can be applied invoking the Optically Thin Fluctuation Approximation (OTFA) since the 

optical thickness of the radiating media, based on the macroscale of turbulence  , is small, 

i.e. (       )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅     [32].  

The strong formulation of the problem, expressed in tensor notation, is presented in Eq. 

2-1. The first three equations are the RANS equations (mass-, momentum- and energy-, 

respectively), the fourth and fifth are the SST     equations and the sixth is the Radiative 

Transfer Equation. The seventh equation relates the N-S equations and the RTE, while the 

last nine equations are simply boundary conditions for the previous integro-partial 

differential equations. 
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4
 For example, the time-constant for radiative transport in an enclosure of characteristic dimension of a meter is 

in the order of few tens of nanoseconds. 
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(2-1) 

Where      is the bounded domain that represents the air-particle mixture domain 

with Lipschitz boundary     . This boundary has been split by convenience into   , 

    ,        and        , where     
  ̅    and   (     )     . It should be noted that the 

body forces have not been included in the momentum equation, Eq. 2-1.b, since they are not 

considered in this Proyecto Fin de Carrera (i.e., buoyancy forces are neglected). This is 

convenient at this point of the design process as will be discussed in Chapter 7. Similarly, 

the pressure work, kinetic energy, viscous dissipation and chemical reaction terms are 

negligible compared to the divergence of the radiative heat transfer and are not included in 

the energy equation, Eq. 2-1.c. The air-particle mixture is modeled as a single phase for 

modeling purposes (see Section 2.3 for a proof) so that no extra equations are required (e.g., 

species transport equations are not needed.) The regularity conditions required are shown in 

Eq. 2-2 (the ones of the boundary condition functions, such as         , are not shown for 

simplicity.) 

                            (2-2) 

Finally, the constitutive relations in Eq. 2-3 are necessary to close the problem: The 

Fourier Law for conduction heat transfer (already included in Eq. 2-1.c in its turbulent 

version), the Navier-Poisson Law with the Stokes hypothesis for the strain rate–stress 

relation (Eq. 2-3.c) and the Perfect Gas Law for thermodynamic relations (Eq. 2-3.b). 

Further closure coefficients and auxiliary relations are required for the turbulence modeling 

[23]
5
 and are shown in Appendix G. 

                                                           
5
 Note that a typographical error exists in [23], which was subsequently corrected by the authors [33]. Namely, 

the production term in the ω-equation was incorrectly given as     , while it should actually be 
  ̃ 

  
. 
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(2-3) 

The mathematical formulation presented above is the one in which only the air-particle 

mixture is modeled. For higher accuracy, one can also solve also the conduction heat 

transfer in the walls, which makes the formulation of the problem even more involved. The 

latter case is the one solved by the multiphysics numerical model developed in this Proyecto 

Fin de Carrera, as will be explained in Chapters 3, 4 and 5. 

2.2. Model Overview 

Two different sub-models are employed for the fluid flow and for the radiation heat transfer 

in order to overcome the difficulties associated with this problem. For the fluid dynamics, 

the commercial CFD software ANSYS Fluent is employed; while for the radiative heat 

transfer an in-house Monte Carlo Ray Tracing code has been developed and programmed in 

FORTRAN for this Proyecto Fin de Carrera. This Monte Carlo code consists of around 

10,000 lines and contains many features to allow high flexibility and solution accuracy. Both 

codes are coupled via User Define Functions (UDFs) programmed in C and iterate 

alternatively until convergence (see Figure 3). These two models are extensively discussed 

in Chapters 3 (Monte Carlo Ray Tracing model) and 4 (CFD model), while Chapter 5 deals 

with the way they are coupled together and the solution procedure. 

 

Figure 3 – Schematic diagram of the solution procedure [20]. 

2.3. Main hypotheses of the model 

Two basic hypotheses are assumed in order to simplify the complexity of the problem: First, 

the particles are at local thermodynamic equilibrium with their surroundings; and second, 

they move as part of the fluid flow (i.e., they follow the entire turbulence spectrum, even the 

Kolmogorov scale). By virtue of these two hypotheses, the mixture of air and carbon 

nanoparticles can be treated as a single phase for modeling purposes. Note, finally, that these 

two hypotheses were implicitly imposed in the formulation of the problem, Eq. 2-1. 
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2.3.1. Local Thermodynamic Equilibrium 

While Local Thermodynamic Equilibrium (LTE) is easily guaranteed in most homogeneous 

fluid flows
6
, this basic assumption is not as trivial in the Small Particle Solar Receiver: 

Since essentially only the carbon nanoparticles absorb solar irradiation (the CO2 contribution 

is neglected, see Section 3.5), they need to instantaneously transfer this heat to the air by 

convection and conduction in order to be in thermal equilibrium with their surroundings. 

From kinetic theory, the heat transfer rate from a particle with radius   to its surroundings is 

given by [34]: 

  
            

   
  

        

 (2-4) 

Where       ⁄  is the Knudsen number,   is the accommodation coefficient,   is the 

low-scale thermal conductivity of the air (the kinetic theory value) and       ⁄  for 

diatomic gases. 

 
Figure 4 – Normalized Temperature Difference vs. Particle Size [34]. Perfect accommodation (   ) and no 

adsorption are assumed. The solar irradiation is 1 kW/m
2
 and ω denotes the concentration factor. 

 

                                                           
6
 For the vast majority of engineering applications the characteristic length is much greater than the mean free 

path, and the characteristic time is much greater than the mean free time. Exceptions are chemically reacting 

flows and very sudden state changes, as in a strong shock wave. 
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It can be also demonstrated that there exists a theoretical maximum temperature 

difference between the particles and the gas, whose value is plotted in Figure 4 [34] for 

different particle sizes and irradiation levels. Based on this model, and for the incident 

radiative fluxes and particles sizes present in the Small Particle Solar Receiver, the 

maximum temperature difference between air and particles is below 4 K, which is consistent 

with experimental observations [17]. 

Note that Local Thermodynamics Equilibrium is of the upmost importance since 

otherwise (1) another equation would be needed to be added to Eq. 2-1 to handle this non-

equilibrium, (2) properties wouldn’t be related by ordinary equilibrium thermodynamics and 

(3) the form of the Radiative Transfer Equation presented in Eq. 2-1.f wouldn’t be valid (for 

example, Kirchhoff’s law wouldn’t apply.) 

2.3.2. Particles move with the air flow as a unique phase 

The following paragraphs aim to illustrate the ability of the carbon nanoparticles to move as 

part of the air flow as a single phase. The model presented here is only a rough 

approximation to reality, but provides a nice intuitive idea of their extraordinary ability to 

follow the turbulence spectrum. It will be assumed that the particles are spherical, which is 

approximately true according to experimental results [35]. If the particles are not single 

spheres but agglomerated spheres, then they would follow the flow even better as they 

would have larger drag force per unit mass. 

The Knudsen number of the flow past a carbon nanoparticle is       ⁄  

    √    
   ⁄                ⁄         (       ,        ) so that the mean 

free path of a molecule is only one order of magnitude smaller than the length scale of the 

problem. Therefore, the continuum hypothesis is no longer valid and statistical mechanics 

needs to be invoked. Fortunately, it is possible to relate the drag force at high Knudsen 

number to the force predicted by continuum mechanics employing the correction factor 

proposed by Cunningham [36]. 

    
 

 
(      

 
    

 )        (2-5) 

Where         ,          and         for particles immersed in air [37]. 

Under the continuum hypothesis and the assumption of incompressible, steady-state 

flow, the velocity field derives from a stream function        . Additionally,       

for any value of the velocity and kinematic viscosity present in the Small Particle Solar 

Receiver so that the convective acceleration terms are negligible in the momentum 

equations, i.e. it is a creeping or Stokes flow. Thus, the stream function is biharmonic and, in 

spherical coordinates, the problem can be written as in Eq. 2-6. 
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(2-6) 

Whose solution is: 
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The velocity, pressure and shear-stress fields, which can be readily computed from  , 

are: 
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(2-8) 

     
       

   
          

         

 

   

   
 

The total drag force predicted by continuum mechanics is obtained integrating the shear 

stress and pressure fields over the particles’ surface, which leads to the celebrated Stokes’ 

law for the drag over spheres moving at low Reynolds number: 

   ∫   ]         

 

 

 ∫ ]         

 

 

            (2-9) 

The actual drag force is finally obtained utilizing the correction factor by Cunningham 

(Eq. 2-5): 

  
        

 
 (2-10) 

Hence, the one-dimensional governing equation of the particle motion
7
 is: 

      

  
 ̇       (2-11) 

First, let’s analyze the step response of the particles, i.e. their response to the Heaviside 

function; which is expressed in Eq. 2-12 and plotted in Figure 5 for a particle radius 

        . 

                                                           
7
 The projection of the inertial, gravity and buoyancy forces in the direction of motion are not included in this 

simple one-dimensional model. 
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Therefore, the time constant is          and the particles will easily follow the bulk 

velocity field. The scales of turbulence the particles are able to follow can be estimated from 

their frequency response, which for linear ODEs with constant coefficients can be illustrated 

through the Bode plot (Figure 6). 

 

Figure 5 – Dimensionless step response of the carbon particles for different air temperatures (particle radius 

        ). 

The spectrum of turbulence needs to be determined as well. From dimensional analysis, 

the Kolmogorov scales can be estimated as follows: 

Kolmogorov Length Scale:   (
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Where the kinematic viscosity present in the Small Particle Solar Receiver that leads to 

the faster Kolmogorov eddies (i.e.,               

 ⁄  at        ) has been used. 

Based on this simplified one-dimensional model, the particles could follow velocity 

fluctuations of, at least, 10,000 Hz; which corresponds with the entire turbulence spectrum, 

including the Kolmogorov scale. In reality, particles follow three-dimensional eddies and the 

inertial force due to rotation inside the eddies needs to be included in the equation of the 

particle motion. Moreover, the transient term in the Navier-Stokes equations may actually be 

non-negligible and might need to be included as well. Therefore, the previous results are 

only a rough estimate of the extraordinary ability of the particles to follow high-frequency 

signals and as such should be interpreted. Note, however, that for our hypothesis to be valid 

(the particles move with the air flow as a single phase for modeling purposes) it is only 

necessary that the particles can follow the turbulence scales that are resolved by the CFD 

solver (grid scales) but not those that are modeled (sub-grid scales), which is definitely true 

for the particle sizes (200 nm) and mesh sizes (around 5 mm in the smallest cell) employed. 

 

Figure 6 – Bode plot of the particles response under air velocity fluctuations at different air temperatures 

(particle radius         ). 
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Chapter 3 

The Monte Carlo Ray Tracing Method for Radiation 

Heat Transfer 

Radiative heat transfer within participating media is one of the most mathematically 

challenging engineering problems. In fact, except for a few simple geometries and radiative 

properties, very few closed-form solutions to radiation heat transfer problems do exist. 

Therefore, in most situations it is necessary to rely on numerical techniques to find a 

solution to thermal radiation problems. Of course, classical numerical methods for Partial 

Differential Equations –such as finite difference, finite element or finite volume methods– 

can be applied to thermal radiation whenever the governing integro-partial differential 

equation (the Radiative Transfer Equation, Eq. 2-1.f) can be transformed into a set of partial 

differential equations, which can be accomplished via Spherical Harmonics [38-42] or 

Discrete Ordinates [43-48] methods
8
. Another possibility is to tackle the integral equations 

directly employing numerical quadrature for the integrals [24]. However, if the thermal 

radiation problem is involved, as occurs in the Small Particle Solar Receiver
9
, a solution by 

conventional numerical techniques becomes extremely complicated, if not impossible. For 

these situations, only the Monte Carlo Ray Tracing (MCRT) method is well suited [49-55]. 

Figure 7 schematically shows the CPU time required to solve a radiative heat transfer 

problem as a function of its complexity [24]. For simple problems, conventional methods 

show the best performance; while when the problem becomes involved the MCRT method is 

the best, and maybe only, option to obtain a solution. 

Therefore, the Monte Carlo Ray Tracing method is employed for the radiative heat 

transfer modeling of the Small Particle Solar Receiver due to its unique capacity to exactly 

model the physics of the radiation in complex geometries with spatial, spectral and 

temperature-dependent radiative properties; all of them features present in the Small Particle 

Solar Receiver. The MCRT methods use a statistical approach to probabilistically model the 

underlying physics of the radiation heat transfer, rather than numerically solving the 

Radiative Transfer Equation (Eq. 2-1.f). In particular, Monte Carlo Ray Tracing methods 

simulate radiative heat transfer by tracking a statistically significant number of rays that 

                                                           
8
 These methods replace the directional dependence of a continuous function, namely intensity, by a set of 

functions that does not depend on direction (but still depend on position and maybe wavelength) and represent 

an average of the intensity over the corresponding range of solid angles. This way, derivatives and integrals 

over directional variables are replaced by simple algebraic operations. 

9
 The radiative properties of the carbon particles have a strong spectral dependence. Moreover, it is necessary 

to accurately model the directional dependence of the concentrated solar irradiation from the heliostat field to 

predict the temperature of the receiver’s walls. 
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represent energy bundles or photons. These photon bundles are traced throughout the 

receiver domain,  , and interact with the air-particle mixture (scattering, absorption), the 

walls (reflection, absorption) and the window of the receiver (reflection, absorption, 

transmission). This way, Monte Carlo simulations produce statistical estimates of 

parameters describing the radiation heat transfer, such as the radiative heat flux or the 

divergence of the radiation heat flux. However, Monte Carlo methods suffer from the 

statistical nature of their results, which sometimes demands a large computation time to 

obtain the precision and accuracy required in engineering applications. 

 

Figure 7 – Comparison between conventional solution techniques and the Monte Carlo method for radiation 

heat transfer. 

3.1. Intuitive Idea of the Monte Carlo Ray Tracing Method 

One can think of the Monte Carlo Ray Tracing method from a quite abstract point of view in 

which a set of random numbers ( ) –generated in a Random Number Generator (RNG)– is 

employed to produce a set of variables ( ) –by inverting proper Cumulative Distribution 

Functions (CDF)– that characterize how a photon is emitted (location, direction, 

wavelength) and how it interacts with the boundaries and the participating medium. Of 

course, the information obtained after tracing only one ray is insignificant, but repeating the 

process over and over (thousands or maybe millions of times) it is possible to reproduce the 

features of the radiation heat transfer and obtain an accurate estimate of the objective 

function ( ), such as the view factor, the radiative heat flux, the divergence of the radiative 

heat flux, and the like. Figure 8 shows a schematic representation of such intuitive idea.      

is the d-dimensional random vector based on a [0,1)
d
 uniform distribution for the ray  ,      



Pablo Fernández del Campo  Universidad de Valladolid 

44 

 

is the d-dimensional vector containing the variables that describe the ray   and how it 

interacts with the boundaries and the participating medium (position, direction and 

wavelength of emission; whether a ray is absorbed or reflected when hitting a boundary, 

etc.),    is the performance function,  ̂    is the estimator of the objective value (radiative 

heat flux, divergence of the radiative heat flux, etc.) obtained for the ray   and  ̂  〈 ̂   〉 is 

the estimator of the objective value after tracing   rays. Note that the only randomness of 

the MCRT method lies on the generation of      and all the rest of the process is purely 

deterministic
10

. 

 

 

Figure 8 – Schematic representation of a Monte Carlo Ray Tracing simulation. 

3.2. Cumulative Distribution Functions 

In order to follow the histories of radiative energy bundles in a statistically meaningful way, 

the position, direction and wavelength of emission, the behavior of the surfaces and the 

                                                           
10

 In reality, some random numbers need to be picked during the ray tracing when using the collision-based 

MCRT (one of the two MCRT strategies to be discussed in Section 3.7.2) and the dimension of      is ray-

dependent. Nevertheless, the same intuitive reasoning applies for the collision-based method as well. 
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participating media, etc. must be chosen according to proper Cumulative Distribution 

Functions (CDF). For example, if a given property   (position of emission, wavelength, etc.) 

has a probability density function     , it is possible to reproduce its behavior by picking a 

random number from a [0,1) uniform distribution and inverting Eq. 3-1. Of course, only one 

random number does not mimic the actual behavior of  , but in the limit of an infinite 

number of random numbers the actual behavior is reproduced. 

     ∫        

 

 

 (3-1) 

Although the expression of the CDFs can become much more involved when dealing 

with coupled, multidimensional probability density functions (it could involve multiple 

integrals), this concept also applies to such situations and constitutes the basic underlying 

concept of any Monte Carlo simulation. 

3.3. Random Number Generator 

In order to probabilistically solve a radiation heat transfer problem via Monte Carlo 

simulation, thousands or maybe millions of random numbers need to be utilized. Externally 

generating such a large set of random numbers and storing them in the computer would 

require a prohibitive amount of memory. Hence, the only feasible way to do so is by 

generating the random numbers within the computer itself. This appears to be a 

contradiction since digital computers are the incarnation of a logic system (i.e., 

deterministic) [24], but there exist several techniques to generate pseudorandom numbers 

(which are actually deterministic but behave as truly random numbers.) After making the 

choice of a starting point (an initial seed), these methods deterministically generate a new 

pseudorandom number from the previous one. 

In our Monte Carlo code, a prime modulus multiplicative linear congruential generator 

based on Schrage’s method with proper parameters [56] is employed to generate a virtually 

infinite sequence of statistically independent, uniformly distribute numbers between 0 and 1. 

This is done by the algorithm of Park and Miller [57] and the initial seed is obtained from 

the local time through the localtime function from the time.h header file of the C 

Standard Library [20], i.e. it varies between Monte Carlo iterations. 

3.4. Monte Carlo Mesh Generation 

Prior to perform a Monte Carlo Ray Tracing simulation, the mathematical domain  ̅ must be 

discretized into a finite number of cells    so that  ̅      
    and   (     )     , where 

  is the number of Monte Carlo cells. Note that  ̅ is used instead of   since both fluid zone 

(three-dimensional cells) and boundaries (two-dimensional cells) participate in thermal 

radiation and need to be included in the Monte Carlo Ray Trace mesh. 
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As stated in Chapter 2, the in-house Monte Carlo code developed in this Proyecto Fin 

de Carrera is able to simulate arbitrarily complex axisymmetric receivers, which is of 

utmost importance for the design and optimization of the solar receiver as non-cylindrical 

geometries will most likely increase the thermal efficiency and reduce the wall temperature. 

Therefore, the mesh generator must be able to generate meshes for any axisymmetric 

geometry. Moreover, on account of the high temperature and radiative-heat-transfer-

divergence gradients present in the Small Particle Solar Receiver, non-uniform MCRT 

meshes would produce more accurate results [55]. Hence, the MCRT model utilizes 

structured (to speed up the ray tracing), non-uniform (to improve accuracy) meshes. 

Additionally, the size of the cells in different regions is a user-dependent input of the mesh 

generator (see Figure 9 for greater clarity). The procedure employed by the mesh generator 

to generate structured, non-uniform meshes in arbitrary axisymmetric geometries is 

described in the subsequent paragraphs. 

 
Figure 9 – Regular Monte Carlo mesh (top) vs. irregular Monte Carlo mesh to improve the accuracy of the 

radiative heat transfer solution (bottom). A  -section is shown. The red lines represent the walls, outlet tube, 

inlet surface and outlet surface; while the light blue line represents the (flat) window. 
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First, the two-dimensional position of the nodes
11

 (in a  -plane) will be generated and 

stored in cylindrical coordinates      . They are calculated as summarized in Algorithm 1 

and stored in a two-dimensional matrix, which implicitly takes into account the connectivity 

of the cells. 

Algorithm 1 

1. Generate the mesh as if the window was flat (Figure 10.a). 

2. If the window is curved (elliptical, spherical cap), reconstruct the mesh to include it: The fluid cells near 

the window are displaced and compressed towards the right to accommodate the presence of the curved 

window (Figure 10.b). 

 
Figure 10 – Example of a  -section of the Monte Carlo mesh with a flat window (top) and an ellipsoidal 

window (bottom). The figure on the top is also the intermediate step to generate the mesh with curved windows 

(the so-called Step 1 in Algorithm 1). The red lines represent the walls, outlet tube, inlet surface and outlet 

surface; while the light blue line represents the window. For completeness, the centroids of the Monte Carlo 

cells are shown in circles as well (dark blue: fluid cells; red: wall, outlet tube, inlet and outlet cells; light blue: 

window cells; black: fictitious cells, necessary to maintain the structured character of the mesh.) 

                                                           
11

 Hereinafter, node will denote the vertexes of the cells. 
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Once the       coordinates of the nodes are generated, the position of the cells’ 

centroids are calculated and stored in a two-dimensional matrix as well. For the sake of 

simplicity, the equations to calculate the centroids of the different kind of MCRT cells are 

not presented here. Finally, the three-dimensional Cartesian coordinates of both the nodes 

and the centroids of the cells are generated (by proper rotation of the       coordinates 

around the Z axis, Eq. 3-2) and stored in three-dimensional matrices: 

(
 
 
 
)  (

          
         

   
)  (

 
 
 
) (3-2) 

On account of the structured character of the Monte Carlo mesh, any cell (fluid cell, 

wall cell or window cell) can be identified by three indexes        ; which denote the axial, 

radial and angular position, respectively, and make the connectivity between cells trivial. 

Thus, memory and CPU time requirements are reduced compared to unstructured 

referencing. 

It is convenient to introduce the following nomenclature for the air-particle mixture 

cells of the Monte Carlo mesh, for which Figure 10.b may be useful: 

- Cells Type 1: Cells whose centroid verifies        and       |   . The common 

feature of cells Type 1 is that the    and    faces are always planes and the    and    

faces are always cylinders, i.e.        ⁄         ⁄         ⁄         ⁄   . 

- Cells Type 2: Cells whose centroid is such that       . In these cells, the    and    

faces are planes and the    and    faces are cones (of which cylinders are a particular 

case), i.e.        ⁄         ⁄    but        ⁄         ⁄   . 

- Cells Type 3: Cells whose centroid verifies        and       |   . In cells Type 3 

the    and    faces are always cylinders, while the    and    faces can be a portion of 

a sphere or an ellipsoid, i.e.        ⁄         ⁄    but        ⁄         ⁄   . 

Regardless the type of air-particle mixture cell, the    and    faces are always planes. 

Note also that with the mesh generation algorithm employed, either the minimum and 

maximum radial positions or the minimum and maximum axial positions of every Monte 

Carlo cell are always constant across the cell (they do not depend on the axial or radial 

coordinate, respectively.) This is of great importance to simplify the computation of the 

volume and the Cumulative Distribution Functions of the location of emission
12

. 

Finally, it should be pointed out that the geometries of the window that the MCRT mesh 

generator can generate are: 

1. Flat windows with one degree of freedom, namely the size (e.g., the diameter.) 

                                                           
12

 This way, only the dependence of one coordinate cannot be inverted analytically and needs to be tabulated. 
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2. Ellipsoidal windows with two degrees of freedom: Size and shape (only one degree of 

freedom is required to characterized the shape of an axisymmetric oblate spheroid. In 

particular the ratio between principal axes is employed.) 

3. Spherical cap windows with two degrees of freedom: Size and shape (the shape is 

characterized through the cap angle.) 

3.5. Steps of the Ray Tracing 

The main steps to perform a Monte Carlo Ray Tracing simulation are outlined in Figure 11. 

For the sake of simplicity, only the analytical expression of the Monte Carlo cells’ volume 

and the Cumulative Distribution Functions (instead of their mathematical proof) will be 

presented. Hence, the goal of this section is to illustrate the procedure rather than delving 

deeper into the rigorous mathematical formulation. 

1. Calculate the area (two-dimensional cells) or the volume (three-dimensional cells) of 

all the cells of the Monte Carlo mesh 

The area (two-dimensional cells) and the volume (three-dimensional cells) of the Monte 

Carlo cells needs to be computed to (1) calculate the emissive power of every cell (Step #2) 

and (2) calculate the source term per unit volume or per unit area (Step #8), which is the 

variable to be passed to the CFD solver ANSYS Fluent. When the MCRT code is not 

coupled to ANSYS Fluent, e.g., to validate the code or to perform statistical analyses of 

different MCRT strategies (see Section 3.7.2 in this chapter), the mathematical volume/area 

of the Monte Carlo cells is calculated by integration over their geometrical domain. The 

analytical expressions of the area of the different types of two-dimensional cells are reported 

in Appendix A. Using, without loss of generality, a cylindrical coordinate system such that 

      in the intersection of the   ,    and     faces of the cell  , the volume of the 

three-dimensional cells can be readily computed as: 

 Cells Type 2: 

   ∫ ∫ ∫   

     

     

  

 

  

 

     ∫
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 (3-3) 

 Cells Type 3: 
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– THE RAY TRACING STARTS HERE – 

Loop over all the Monte Carlo cells 

 

 
– THE RAY TRACING OF A PARTICULAR RAY STARTS HERE – 

Loop over         , where    is the number of rays to be traced from the cell         (calculated in Step #3). 

 

 

 

 

 

 

 

 

  

 

 

– THE RAY TRACING OF A PARTICULAR RAY ENDS HERE – 

– THE RAY TRACING ENDS HERE – 

 

 

 

 

 

Figure 11 – Flow chart with the main steps to perform a Monte Carlo Ray Tracing simulation. 

Since cells Type 1 are just a particular case of both cells Type 2 and cells Type 3, either 

equation leads to the same result   
 

 
   

    
      . The integrals in Eq. 3-3 and 3-4 

1. Calculate the area (2-D cells) or the volume (3-D cells) of all the cells of the Monte Carlo mesh 

2. Calculate the emissive power of every Monte Carlo cell 

3. Calculate the energy per ray and the number of rays to be traced from each Monte Carlo 

cell 

4. Determine the variables that describe how a ray is emitted: location, direction and wavelength 

5. Calculate the distance to an absorption or scattering event 

 
6. Calculate the distance to the closest surface 

 
7. Determine whether the rays is absorbed, scattered or transmitted to the next cell 

 

 
7.1. Absorbed 7.2. Scattered 7.3. Transmitted 

7.3.1. To a 3-D cell 7.3.2. To a 2-D cell (wall) 

7.3.2.1. Absorbed 7.3.2.2. Reflected 

8. Convert the total source term into source term per unit volume 

9. Calculate the inlet temperature of the air-particle mixture based on the radiative source term on the inlet 

surface 

10. Post-process and report relevant variables 

7.3.3. To a 2-D cell (window) 

7.3.3.1. Absorbed 

 

7.3.3.2. Reflected 7.3.3.3. Transmitted 
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for all the cell geometries present in the Monte Carlo mesh have been calculated and are 

reported in Appendix B. 

When the MCRT is coupled to the CFD solver, the previous strategy may lead to an 

energy imbalance: The mathematical domain of the fluid, walls and window is discretized 

into a finite number of CFD cells, and the total volume/area of the CFD model does not 

exactly match the area/volume provided in Appendices A and B. Since the way the source 

term is passed from the MCRT code to ANSYS Fluent is per unit area/volume, the total 

source term in the receiver (energy per unit time) that is plugged into the energy equation of 

the CFD solver wouldn’t be exact. Moreover, as the error in the thermal efficiency of the 

receiver or the useful power –two of the main outputs of the model– is of the same order as 

the energy imbalance, this error cannot be tolerated. Thus, the area/volume of all the CFD 

cells that are inside a Monte Carlo cell are added up (via User-Defined Functions, see 

Section 5.1) and this is the area/volume employed in the MCRT code. 

2. Calculate the emissive power of every Monte Carlo cell 

Once the area/volume (calculated in Step #1), temperature (passed from ANSYS Fluent via 

UDF, see Section 5.1) and spectral emissive properties are known (the latter two assumed 

constant in each Monte Carlo cell), the emissive power of the cells can be readily obtained. 

 Emissive Power of 2-D cells: 

              
  

       
∫                   

 

 

∫           
 

 

 
∫                   

   

 

∫           
   

 

 

 

(3-5) 

Where integrals are computed numerically in the Monte Carlo code using         . 

While obviously         for a blackbody, the spectral emissivity of different materials 

and surface conditions needs to be measured experimentally. For example, the spectral 

emissivity of aluminum oxide, one of the main alternatives for the material to be employed 

on the walls, is plotted in Figure 12. 

 Emissive Power of 3-D cells: 

               
  

       
∫                   
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∫           
   

 

 

 

(3-6) 

Where the spectral absorption coefficient    of the particles is calculated via Mie theory 

[58] and the gas phase is modeled as radiatively non-participating due to the negligible 
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amount of CO2 generated in the receiver. In particular, the partial pressure of CO2 after the 

complete oxidation of the carbon particles when a mass loading of 0.5 g/m
3
 is employed is:  

    
     

                                   

which leads to     
   vs.         for the solar spectrum and the axial path length. 

 
Figure 12 – Spectral emissivity of aluminum oxide (Al2O3). Note that, under local thermodynamic 

equilibrium, the spectral emissivity equals the spectral absorptivity in diffuse surfaces such as Al2O3. 

3. Calculate the energy per ray and the number of rays to be traced from each Monte 

Carlo cell 

As discussed in Section 3.7.1.3, the optimum strategy consists on tracing a number of rays 

from each cell so that the energy per ray is constant, as long as a minimum number of rays 

are emitted from each ray (Eq. 3-7). The maximum number of rays traced from every Monte 

Carlo cell is limited as well. 

      {   [          (
  

      
)      ]      } (3-7) 

Where    is the number of rays traced from the cell  ,        is the total number of rays 

to be traced (see Section 5.4),    is the emissive power of the cell  ,        ∑     is the 

total emissive power of the Small Particle Solar Receiver (including the air-particle mixture, 

the walls and the window), and        denotes the smallest integer greater than  .      and 

     are the minimum and maximum number of rays to be traced from every cell, 

respectively, and will be defined in Eq. 3-40. 

Finally, the energy per ray is simply    
  

  
. 
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4. Determine the variables that describe how a ray is emitted 

4.1. Location of emission 

To determine the location of emission from a three-dimensional cell, three random numbers 

need to be picked (one per spatial dimension). For convenience’s sake, cylindrical 

coordinates are employed, i.e., one random number is utilized for the axial coordinate, 

another for the radial coordinate and one more for the azimuthal coordinate. Since both 

emissivity and temperature are constant over each Monte Carlo cell, the position of emission 

can be calculated based on the Cumulative Distribution Function of the volume. Employing 

a general orthogonal coordinate system            this is expressed as in Equations 3-8. 
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(3-8) 

Where it is now obvious the coupling between the coordinates of emission. These 

equations can be considerably simplified by cleverly choosing the order of integration:  

- Cells Type 2: Axial position – Radial position – Azimuthal position, i.e.,            

        

- Cells Type 3: Radial position – Axial position – Azimuthal position, i.e.,            

        

Since cells Type 1 are just a particular case of both cells Type 2 and cells Type 3, either 

order simplifies Equations 3-8. Note that the possibility of simplifying Equations 3-8 arises 

from the fact that for such order (1)               and               are not piecewise 

functions –while               and               are– and, moreover, (2) 
       

   
 

       

   
 

       

   
 

       

   
         . 

In particular, the expressions to calculate the location of emission from cells Type 2 are 

given in Equations 3-9. 
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(3-9) 

While for cells Type 3: 
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 (3-10) 

Equations 3-9.a-b and 3-10.a-b depend on the particular shape of the Monte Carlo cell 

through               and              , respectively. The CDF obtained after integration 

for all the cell geometries present in the Monte Carlo mesh have been calculated and are 

reported in Appendix D. 

For two-dimensional cells, similar arguments apply but only two equations –namely 

Equations 3-8.a-b– and two coordinates –       – are required. The expressions to 

determine the location of emission from the different kinds of two-dimensional cells are 

provided in Appendix C. 

4.2. Wavelength of emission 

 From a surface (two-dimensional cells): 

Under Local Thermodynamic Equilibrium (see Section 2.3.1 for a proof of LTE) the 

spectral absorptance equals the spectral emittance, as expressed by Kirchhoff’s law, and the 

CDF for the wavelength of emission can be readily obtained as: 
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⇒           (3-11) 

 From the air-particle mixture (three-dimensional cells): 

By similar arguments as for the emission from a surface: 
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⇒           (3-12) 

Where    is obtained via Mie theory [58] and   is the Planck-mean absorption 

coefficient computed by weighted-average of    (based on the blackbody emissive power at 

temperature  ). 

4.3. Direction of emission 

 From a surface (two-dimensional cells): 

   
 

 
∫    ∫

  
        

  

 
 ⁄

 

 

 

             ⇒              

   
∫   

                      

 

∫   
                     

 
 ⁄

 

⇒                 

 

(3-13) 

For an isotropic surface   
         

    ⇒        . If, additionally, the surface is 

diffuse   
         ⇒         √  . Both are, in general, good approximations to the 

radiative behavior of a surface and will be always employed except stated otherwise. 

 From the air-particle mixture (three-dimensional cells): 

Under Local Thermodynamic Equilibrium and assuming the particles –which are not 

perfect spheres [35]– are randomly oriented, emission within the air-particle mixture is 

isotropic and, therefore: 

                        (3-14) 

5. Calculate the distance to an absorption or scattering event 

When radiation travels through a participating medium, the energy is attenuated by 

absorption and scattering. On account of the mathematical analogy between both 

phenomena, they can be treated in a similar fashion with the only difference of the parameter 

involved (absorption coefficient vs. scattering coefficient.) 
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The fraction of radiation absorbed through a path length    is: 

     ∫     
  
  (3-15) 

Neither the spectral absorption coefficient nor the spectral scattering coefficient are 

constant throughout the Small Particle Solar Receiver, both due to temperature gradient and 

particle oxidation (recall the latter is not included in the model yet, as it is currently being 

developed by Trent Martin, a graduate student in our group.) However, all properties are 

assumed constant in each Monte Carlo cell and Eq. 3-15 can be inverted analytically. In 

particular, the distance to absorption is the average of the distance calculated for all the cells 

through which the ray has previously travelled (the same random number,   , is employed 

in all the cells): 

   (
∑    

∑        

)      (3-16) 

Where   refers to all those cells through which the energy bundle has previously 

traveled from emission,    is the distance that the ray has traveled through the cell  , and      

is the spectral absorption coefficient of the cell  . 

All the previous concepts are valid for scattering just by replacing    for     . Hence, 

the distance to scattering event can be computed as in Eq. 3-17. 

   
 (

∑    

∑          

)      
 (3-17) 

Both spectral absorption and scattering coefficients are computed in the MCRT code 

right after the wavelength of emission is determined (Step #4.2). This calculation is 

conducted for the pressure and temperature conditions at the inlet, i.e., referring the mass 

loading to the air density at the inlet. Therefore, the spectral absorption and scattering 

coefficients of each cell need to be modified to consider the volumetric expansion due to 

temperature increase (                 ⁄ ). This way the CPU time is reduced around 40% 

compared to calculating the spectral absorption and scattering coefficient every time a ray 

enters into a new cell. Of course, the strategy presented in this paragraph is only valid since 

particle oxidation is not included in the model and the radiative properties of particulate 

media are linear in the mass loading (but not in the particle size.) 

6. Calculate the distance to the closest face 

The calculation of the distance to the closest face is split up into two steps: 
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1. Calculate the distance to the six faces
13

: {  }        

2. Pick the smallest one
14

:        {  } 

For the first step, the kind of surface the six faces are (planes, cylinders, cones, 

ellipsoids and/or spheres) is determined first and the distance itself is calculated later. While 

for flat and cylindrical faces the algorithm to calculate the distance was already implemented 

in the 2-D model [19], they have been simplified and optimized to reduce the CPU time. 

Moreover, the algorithms to calculate the distance to conical, ellipsoidal and spherical faces 

have been developed for this 3-D model. The equations to calculate the distance to the 

different kind of faces present in the MCRT mesh are shown in Appendix E. 

Special care need to be taken when employing only one or two angular divisions. With 

one angular division, the MCRT reduces to a 2-D model and only four (or three
13

) 

intersections are to be calculated. With two angular divisions, the mathematical surface of 

the    and    faces is the same. Hence, only one of both distances needs to be computed 

and it is necessary to identify with which of them the ray actually intersects. 

7. Determine whether the rays is absorbed, scattered or transmitted to the next cell 

7.1. If the ray is absorbed (         
) 

The energy of the ray is added to the corresponding Monte Carlo cell. 

7.2. If the ray is scattered (   
    and    

   ) 

The new direction of the ray needs to be determined. The zenith and azimuthal angles 

respect to the initial direction of propagation can be obtained from proper CDFs for the 

scattering phase function. Assuming the particles are randomly oriented, the phase function 

of the air-particle mixture is the same as the one of an individual, spherical particle, which is 

derived from Mie theory [58]. 
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(3-18) 

                                                           
13

 Some cells only have five boundary faces (the cells next to the axis of symmetry and the cells next to the left 

wall for some geometries.) These cases need to be identified and the computation of the distance to the 

nonexistent face, avoided. 

14
 If the smallest distance is the same for two faces, the ray intersects with an edge and two indexes need to be 

changed simultaneously. Since double precision is employed (the probability of this to happen is less than     

10
-7

), the tracing of such rays is stopped without noticeable loss of accuracy in the numerical solution. 
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7.3. If the ray is transmitted (         
) 

7.3.1. Transmitted to a three-dimensional cell (air-particle mixture cell) 

The indexes         that report the current Monte Carlo cell (recall the MCRT mesh is 

structured) need to be updated. While in general only one unit need to be added (or 

subtracted) to the proper index (e.g.,            ), in some situations two units must be 

changed at once, such as when the ray crosses the extension of the outlet tube. The code is 

able to determine this particular case and properly modify the indexes based on that. 

7.3.2. Transmitted to a two-dimensional cell (Case I: Wall) 

In this situation, the ray is not actually transmitted. Rather, a random number is generated to 

determine whether the ray is absorbed or reflected by the wall: If     
  the ray is 

absorbed, while it is reflected otherwise. The directional, spectral absorptivity   
  is a 

material property (Kirchhoff’s Law under LTE) and equals the directional, spectral 

emissivity   
 . 

7.3.2.1. If the ray is absorbed 

The energy of the ray is added to the corresponding Monte Carlo cell. 

7.3.2.2. If the ray is reflected 

The reflective behavior of the walls is idealized as a combination of a pure diffuse and a 

pure specular component, i.e., the spectral, bidirectional reflection function can be expressed 

as in Eq. 3-19. 

 

  
                 

        

 
                                               for       and         

    

          
                        for       and         

(3-19) 

A random number is employed to determine whether the ray is reflected specularly 

(    ) or diffusely (    ), and the direction of reflection is computed using Equations 3-

20 or Equations 3-21, respectively [19,24]: 

 Specular Reflection: 

               (3-20) 

 Diffuse Reflection: 

        √           (3-21) 
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Where the z-axis of the spherical coordinate system (used to define   and  ) is the 

inward normal vector to the wall. The orientation of the x- and y-axes on isotropic surfaces 

is completely arbitrary. 

7.3.3. Transmitted to a two-dimensional cell (Case II: Window) 

Once again, a random number is used to determine whether the ray is reflected, transmitted 

or absorbed by the window. The directional, spectral absorptivity (  
 ), transmissivity (  

 ) 

and reflectivity (  
 ) of the window are calculated using electromagnetic theory

15
 (Equations 

3-22). Note that the electromagnetic theory can be applied since the interfaces between glass 

and air (1) are optically smooth at the scale of the wavelength and (2) are of precisely the 

same (homogeneous) material as the bulk material [24]. 
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(3-22) 
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7.3.3.1. If the ray is absorbed 

The energy of the ray is added to the corresponding Monte Carlo cell. 

7.3.3.2. If the ray is reflected 

As electromagnetic theory applies, the reflection on the window is purely specular so that 

Equations 3-20 is used. 

7.3.3.3. If the ray is transmitted 

The ray is lost and its energy is stored in proper variables so that the following information 

is available when post-processing the results: 

 Origin of the losses: The energy emitted from each cell (and coming from the heliostat 

field) that is eventually lost is stored and a complete description of the origin of the 

losses is obtained. 

 The way the energy coming from the heliostat field is lost: just due to scattering, due to 

reflection on the exterior wall, etc. 

                                                           
15

 It is also assumed that      is small enough so that Fresnel equations apply. 
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This information is useful to reduce the radiative losses in the design optimization 

process. 

8. Convert the total source term into source term per unit volume 

The total radiative source term calculated by the Monte Carlo method is converted into 

source term per unit volume, as this is the value to be used by the CFD solver in the energy 

equation.  

    
  

  
   

  
⁄        ⁄ ] (3-23) 

Recall that when the MCRT method and the CFD solver are coupled, the volume of all 

the CFD cells inside a Monte Carlo cell –instead of the mathematical volume– is employed 

to exactly match the energy balance as will be explained in Section 5.1. Finally, if the walls 

were modeled as boundary surfaces in ANSYS Fluent, instead of as volumetric media, the 

source term per unit area would be to be used. 

  
   ̂  

  
   

  
⁄       ⁄ ] (3-24) 

9. Calculate the inlet temperature of the air-particle mixture based on the radiative 

source term on the inlet surface 

The inlet surface participates in the radiation heat transfer and a net radiative heat flux does 

exist on it; so that the inlet temperature of the air-particle mixture in the receiver needs to be 

modified based on such a radiative source term: 

      
    ∫  ̇           

      
 

  

 (3-25) 

Assuming a linear variation of the specific heat capacity at constant pressure    

       
   

  
 (       ) the previous integral can be explicitly inverted in terms of       

 : 

      
  

   √      

  
 (3-26) 

Where: 
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The subscript   denotes the conditions at the outlet of the recuperator or the compressor 

(for recuperated and non-recuperated cycles, respectively). In our model         
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(recuperated cycled) is employed [60] in an effort to evaluate the solar receiver itself. Note, 

however, that the inlet temperature in a recuperated gas turbine engine actually varies with a 

number of factors [61] (e.g., solar thermal input, guide vane angle or recuperator 

performance). 

A minimum and maximum inlet temperature (the former usually 700 K and the latter 

800-1100 K depending on the ratio mass flow rate vs. solar thermal input) is employed to 

improve convergence, so that: 

          {      
              

          
  } (3-27) 

10. Post-process and report relevant variables 

The following variables are reported and stored in .txt and .dat files: 

- Monte Carlo mesh information: Position of the cell centroids and cell nodes, as well as 

the volume/area of each cell. 

- Energy per ray field and rays per Monte Carlo cell field. Only the file of the last 

iteration is kept. 

- Radiative source term field. The files of all the iterations are kept. 

- Temperature field. The files of all the iterations are kept. 

- Summary file with the number of rays traced (both coming from the heliostat field and 

emitted from inside the solar receiver), the solar thermal input, the radiative losses, the 

total radiative source term, and some other relevant variables. The residual term of the 

radiative energy balance is reported as well. The data of all the iterations are kept. 

- Total radiative source term per zone (air-particle mixture, left wall, right wall, exterior 

wall, outlet tube and window). The data of all the iterations are kept. 

- Detailed description of the origin of the losses. Only the file of the last iteration is kept. 

The availability of this information allows improving the understanding of the operating 

conditions of the receiver and, more importantly, facilitates the design optimization process 

to be performed later. 

3.6. Coordinate Systems 

Throughout the previous sections the local zenith and azimuthal angles have been used to 

describe the directional dependence of the radiation reaching and leaving a surface, while 

the ray tracing is performed in a global Cartesian coordinate system. Therefore, the local 

spherical coordinate system associated to a surface and the global Cartesian coordinate 
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system need to be related mathematically. First, the z-axis unit vector of the local Cartesian 

coordinate system associated to a point of the surface is: 

 ̂             
            

‖            ‖
 

 (3-28) 

Where   denotes the equation of the surface and the sign   is chosen so that  ̂  points 

to the inside of the receiver. The previous calculation is performed in different ways for flat, 

cylindrical, conical, spherical and ellipsoidal surfaces so that the number of computer 

operations is minimized. 

On account of the axisymmetry of the solar receiver, a second unit vector of the local 

Cartesian coordinate system, let’s say  ̂  –although the election is arbitrary–, can be readily 

computed as: 

 ̂         ̂        ̂   
  

√  
    

 

 ̂  
  

√  
    

 

 ̂  (3-29) 

And finally,  ̂   ̂     ̂ . This way, the transformation matrices to relate the 

components of a vector in the global and local Cartesian coordinate systems,   
  and   

 
, are: 

{  
 }

  
  ̂     ̂    {  

 
}
  

  ̂     ̂    (3-30) 

So that: 

   {  
 }        {  

 
}     (3-31) 

Of course, this expression also applies for the position vector, i.e.,    {  
 }     and 

   {  
 
}    , where    (        )

 
 and              

 . 

Equations 3-31 are the general expressions to relate the components of a vector in the 

local and global Cartesian coordinate systems. However, these expressions can be 

significantly simplified in some cases (e.g., on flat or cylindrical surfaces) so that it is 

possible to accomplish the change of basis with fewer operations. This has been taken into 

account in the MCRT code in order to prevent unnecessary computations. 

Finally, the relation between the local Cartesian coordinate system and the local 

spherical coordinate system (characterized by   and  ) is trivial and given by: 

        (  ̂   ̂ )       

(

 
√      

        
 

       

)

          (
       

       
) (3-32) 
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Note that the minus signs in the equation of    are kept to show that the inverse tangent 

is a multivalued function and the atan2 function from C and FORTRAN must be used. 

On the contrary, to pass from the local spherical to the local Cartesian coordinate 

system the equations to be used are:  

                  

                  

             

 

(3-33) 

While the subscript   in Eq. 3-33 denotes reflection, these expressions are also valid for 

emission by simply substituting       and      . 

3.7. Efficiency Considerations 

3.7.1. Variance Reduction Techniques 

As stated at the beginning of the chapter, Monte Carlo simulations try to estimate a 

numerical quantity   of a real system as: 

          (3-34) 

Where   is an input vector with probability distribution      (e.g. the direction, 

location and wavelength of emission),   is the performance function (the result of the ray 

tracing when using the input vector  ), and   is the quantity to be evaluated (the radiative 

heat flux, the divergence of the radiative heat flux, etc.) To estimate   through simulation, 

Monte Carlo methods generate a random sample    (         ) based on     , compute 

the sample function     , and use the sample-average estimator: 

 ̂  
 

 
∑ ̂   
 

   

 
 

 
∑     

 

   

 (3-35) 

which is unbiased for   and, by invoking the law of large numbers (assuming single 

conditions), converges to the actual quantity to be estimated as   gets large. It is easy to 

prove that    ̂      
 [62] and, thus, the efficiency of the estimator is proportional to 

   
 ⁄ . 

Variance reduction techniques are intended to produce another unbiased estimator,  ̂ 
 , 

statistically more efficient, i.e.,  ( ̂ 
 
)     ̂  . However, different estimators, or even 

different performance functions, may not consume the same CPU time. Hence, the 

efficiency –understood as a measurement of the variance reduction– is not a good way of 

comparing estimators and performance functions. A more fair comparison is based on their 
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performance, which we define as the product of the variance and the CPU time for 

consistency with [55]: 

   ( ̂ )      ̂   (3-36) 

This performance happen to be independent on the sample size if      (which is 

quite true for most Monte Carlo simulations), and is then the parameter employed here to 

compare different estimator and performance functions. 

3.7.1.1. Antithetic Random Numbers 

Let’s consider again the problem of estimating          . Now, let    and    be two 

input vector generated from     . Then  ̂              ]  ⁄  is an unbiased estimator of 

  with variance: 

 ( ̂)  
 (     )   (     )                 

 
 (3-37) 

For the crude Monte Carlo (Eq. 3-35),    and    are independent and then 

                . Obviously, variance reduction is obtained if  (           )   . 

The most obvious way to make the covariance negative is as follows: Whenever the uniform 

random number    is used for a particular purpose (e.g., determine the wavelength of 

emission), the antithetic number      is used for the same purpose the next time it is 

required (i.e. for the wavelength of emission of the next ray.) Since  (       )    it is 

expected that  (           )   . A formal proof of this is provided in [62] under the 

assumption that the performance function is monotone and the components of the input 

vector are independent
16

. Therefore, the Antithetic Random Numbers technique is employed 

whenever possible, i.e., for the position, direction and wavelength of emission. Especial care 

must be taken when synchronizing the antithetic numbers if the Monte Carlo Ray Trace was 

parallelized via GPU computing in the future. 

3.7.1.2. Stratified Sampling 

Stratification is the process of dividing members of a population into different subgroups (or 

strata) and applying an independent sampling within each stratum. The stratified sampling 

estimator of   is: 

 ̂ 
  ∑  

 

  
∑      

  

   

 

   

 (3-38) 

                                                           
16

 When employing non-flat windows or non-cylindrical receivers, the r- and z- location of emission (in 

cylindrical coordinates) from some cells are actually not independent. However, albeit a formal proof for this 

case has not been found, variance reduction is obtained as well. 
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where   is the number of strata,    the probability that the element belongs to the 

stratum  , and    is the number of elements in the sample of the stratum  . The values     are 

generated from the conditional distribution of   given that the element belongs to the 

stratum  . 

While the most simple approach would be to employ a sample size for each stratum 

proportional to its probability (i.e.,       ), greater variance reduction is achieved if more 

elements are taken from those strata with higher variance. In particular, it can be shown [62] 

that the strata sizes    that minimize the variance are: 

    
    

∑     
 
   

 (3-39) 

where    is the variance of      conditioned to the stratum  . In our Monte Carlo Ray 

Tracing software, stratified sample is applied to distinguish between those rays coming from 

the heliostat field and those emitted from inside of the receiver. The nature of this distinction 

arises from the different wavelength of the rays associated with each one and the extremely 

different radiative behavior of the carbon particles between them, as predicted by Mie 

theory. While the exact values depend on the radiative properties of the walls, the Monte 

Carlo technique employed (see Section 3.7.2) and the particular variable analyzed, it was 

found that the variance of the radiative source term due to the rays coming from the heliostat 

field is slightly lower than the one due to the rays emitted from inside of the receiver. Hence, 

in general, it is advisable to use around 30-40% more rays from the receiver than from the 

heliostat field. 

3.7.1.3. Number of emissions from each cell 

In previous models developed by Ruther [19] and Crocker [20] the number of rays emitted 

from each cell was constant throughout the Monte Carlo grid regardless the emissive power 

of the cells. This is a very inefficient way to perform and should be optimized to increase the 

performance (product of the variance and the CPU time) of the Monte Carlo method. 

Actually, the ratio of emissive power between cells was proved to be as high as 3500:1, i.e., 

a large computational effort is done tracing rays with negligible energy, whereas others rays 

carry too much energy and its contribution should be split up into different rays. In reality, 

this strategy is nothing but a stratified sampling technique (see Section 3.7.1.2 above). 

One alternative is to distribute the total number of rays to be traced,       , throughout 

the grid as expressed in Eq. 3-40, where         is the parameter to be optimized and   

is the number of cells of the Monte Carlo mesh. The particular case     is simply the 

strategy employed by Ruther and Crocker of emitting the same number of rays from each 

Monte Carlo cell, while     implies that the number of emissions is directly proportional 

to the emissive power, without any lower and upper limit for the number of emissions from 
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each cell. In particular,   was optimized through discrete optimization for the cases    , 

   ,    ,     ,      and     (say         ). 

      {   [          (
  

      
)      ]      } 

     
      

   
 

     
      

 
   

 

 

(3-40) 

An initial study to draw a conclusion about a possible optimum of the parameter   was 

conducted first. The evolution of several relevant radiative variables as a function of the 

number of rays traced showed      as the strategy with lower error. Thus, we would like 

to determine whether we can –statistically– conclude that the population standard deviation 

of the case      is, or is not, significantly lower than the ones of the other values of  . 

For that, a hypothesis test for the difference between two population standard deviations is 

required. The test statistic for this type of hypothesis testing is     
   

 ⁄  and the critical 

value    is to be found from the F-distribution tables. The null hypothesis, levels of 

significance and decision rule of the hypothesis test conducted are: 

 Null Hypothesis: The population standard deviation of the case      is not 

significantly smaller than the standard deviations for the other cases (           and 

 ). 

 Levels of Significance:       ,        and       . 

 Decision Rule: For           ,            and one-tailed test, we will accept the 

Null Hypothesis if     . The value of    for different levels of significance can be 

found in the F-Distribution tables and are shown in Table 2 for the three values of   

employed here. 

Level of Significance ( )    

0.01 1.53 

0.05 1.35 

0.10 1.26 

Table 2 – Value of    for different levels of significance   (from the F-Distribution with 

120 degrees of freedom in both numerator and denominator.) 

The variance of both the “radiative losses through the window” and the radiative source 

term field in the Monte Carlo mesh were analyzed. The procedure employed was the 

following: 
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1. For each value of  , the MCRT code was employed 121 times
17

 to solve the radiation 

heat transfer problem using different initial seeds in the Random Number Generator.  

2. A FORTRAN code was programmed to post-process this large amount of data, 

calculate the sample variance and the sample mean, and perform the Hypothesis Test for 

the random variable “radiative losses through the window” and for the radiative source 

term in all the cells. For simplicity, only one division in the azimuthal coordinate was 

employed in the Monte Carlo grid. 

Table 3 collects the sample variances and the test statistics of the radiative losses for the 

six values of   previously mentioned. Since the CPU time does not depend on  , the 

performance is simply proportional to the variance and the speedup is proportional to the test 

statistic. As for the radiative source term field in the Monte Carlo grid, only the final results 

of the hypothesis test are presented for simplicity. Figures 13, 14, 15, 16 and 17 show in 

what cells we can (green) or we cannot (red) reject the Null Hypothesis for the levels of 

significance       ,        and       . The ratio of the sample variance (i.e., the 

test statistic) is shown as well (labeled as Ratio and colored in green if        or in red if 

      .) The grey cells represent virtual cells, i.e. cells that need to be included to keep the 

Monte Carlo grid structured but actually do not exist physically. 

                 
   

 ⁄        

  22,355,443       

  9,298,349      

  2,977,458      

   2,118,995      

   1,610,808      

  1,755,763      

Table 3 – Sample variances and test statistics of the random variable “radiative losses 

through the window” for different values of the parameter  . 

Based on the previous results, the population standard deviation of the radiative losses 

for      is significantly smaller than the cases       and   with a level of significance 

       and than the case      with a level of significance       . However, there is 

not statistical evidence to state that it is significantly smaller than the case     for any of 

the levels of confidence considered here. Similar conclusions, although more involved, can 

be reached for the radiative source term field. Again, since the CPU time does not depend on 

the value of  , the performance is proportional to the variance and the previous conclusions 

are also valid for the performance and the speedup. It is noteworthy that the high-  

strategies are especially well-suited to improve convergence near the window (due to the 

high emissive power of such cells), while the differences between different values of   are 

                                                           
17

 To have an F-Distribution with 120 degrees of freedom and match conventional F-Distribution tables (note 

that the number of degrees of freedom in the F-Distribution is the sample size minus one.) 
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much smaller in the back of the receiver. Note also that the front of the receiver is a more 

critical part due to the, at least without oxidation model, greater radiative source term. 

Moreover, high values of the parameter   increase the percentage of rays coming from the 

heliostat field, which require less CPU time due to the higher absorptivity of the carbon 

nanoparticles in the solar spectrum and the fact that no CDFs are require to determine the 

wavelength, position and direction of emission. Therefore,      is even better compared 

to     than what is shown in Table 3 and Figures 13, 14, 15, 16 and 17. Finally, an 

estimation of the reduction of the CPU time to maintain the same uncertainty level in the 

radiative source term field from the case     (initial, non-optimized strategy) to      

(new, optimized strategy) is shown in Table 4. 

For big        and invoking the central limit theorem, the random variables follow 

approximately a normal distribution       , where the mean   is the exact solution of the 

Radiative Transfer Equation and the standard deviation √  is proportional to       (i.e., 

     ). Therefore, the values in Table 4 also show how many fewer rays are necessary to 

obtain the same level of convergence with      compared to     in each cell of the 

Monte Carlo grid. From that, and since the CPU time does not depend on  , we can 

conclude that the reduction of CPU time achieved with an optimized distribution of the 

emitted rays is, on average, of one order of magnitude. 
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Figure 13 – Comparison     vs.     . Cells in which we can reject the Null Hypothesis in green, cells in 

which we cannot in red and virtual cells in gray (i.e. cells that actually do not exist physically.)   denotes the 

level of significance. The Ratio table shows whether        (green) or        (red). Columns are different z-

indices and rows are different r-indices (the azimuthal dependence has been averaged.) The window zone is on 

the left and the exterior wall is at the bottom (last row). 
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Figure 14 – Comparison     vs.     . Cells in which we can reject the Null Hypothesis in green, cells in 

which we cannot in red and virtual cells in gray (i.e. cells that actually do not exist physically.)   denotes the 

level of significance. The Ratio table shows whether        (green) or        (red). Columns are different z-

indices and rows are different r-indices (the azimuthal dependence has been averaged.) The window zone is on 

the left and the exterior wall is at the bottom (last row). 
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Figure 15 – Comparison     vs.     . Cells in which we can reject the Null Hypothesis in green, cells in 

which we cannot in red and virtual cells in gray (i.e. cells that actually do not exist physically.)   denotes the 

level of significance. The Ratio table shows whether        (green) or        (red). Columns are different z-

indices and rows are different r-indices (the azimuthal dependence has been averaged.) The window zone is on 

the left and the exterior wall is at the bottom (last row). 

Figure 15 – Comparison     vs.     . Cells in which we can reject the Null Hypothesis in green, cells in 

which we cannot in red and virtual cells in gray (i.e. cells that actually do not exist physically.)   denotes the 

level of significance. The Ratio table shows whether        (green) or        (red). Columns are different z-
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indices and rows are different r-indices (the azimuthal dependence has been averaged.) The window zone is on 

the left and the exterior wall is at the bottom (last row). 
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Figure 16 – Comparison      vs.     . Cells in which we can reject the Null Hypothesis in green, cells 

in which we cannot in red and virtual cells in gray (i.e. cells that actually do not exist physically.)   denotes the 

level of significance. The Ratio table shows whether        (green) or        (red). Columns are different z-

indices and rows are different r-indices (the azimuthal dependence has been averaged.) The window zone is on 

the left and the exterior wall is at the bottom (last row). 

 

α=0.01 

            

            

            

            

            

            

 

α=0.10 

            

            

            

            

            

            
 

α=0.05 

            

            

            

            

            

            

 

Ratio 

            

            

            

            

            

            
 

Figure 17 – Comparison     vs.     . Cells in which we can reject the Null Hypothesis in green, cells 

in which we cannot in red and virtual cells in gray (i.e. cells that actually do not exist physically.)   denotes the 

level of significance. The Ratio table shows whether        (green) or        (red). Columns are different z-

indices and rows are different r-indices (the azimuthal dependence has been averaged.) The window zone is on 

the left and the exterior wall is at the bottom (last row). 
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6.77 6.39 15.38 15.54 19.82 11.14 10.20 7.49 4.23 3.70 2.54 2.31 

13.28 13.10 19.70 16.85 12.86 8.74 5.84 5.96 3.43 3.40 2.58 2.18 

12.76 19.46 16.53 20.02 12.79 12.55 5.90 7.03 3.84 3.53 2.74 1.34 

20.46 21.78 18.20 14.01 17.33 8.01 8.47 7.45 3.17 3.02 2.19 2.25 

8.08 29.55 20.80 18.10 16.61 7.95 5.78 3.59 3.86 3.12 3.09 1.70 

- 10.35 11.04 8.87 8.54 4.63 4.60 2.04 2.07 1.27 1.13 - 

Table 4 – Reduction of CPU time for the radiative source term field from     (initial, non-optimized 

strategy) to      (new, optimized strategy). Columns are different z-indices and rows are different r-indices 

(the azimuthal dependence has been averaged.) The window zone is on the left and the exterior wall is at the 

bottom (last row). 

3.7.2. Collision Based vs. Pathlength Based Method 

All the details provided previously about the Monte Carlo Ray Tracing method correspond 

with the so-called collision-based, or standard, Monte Carlo. However, there exists another 

version of the MCRT method: the pathlength-based, or energy partitioning, technique. 

While absorption occurs in singular absorbing events (collisions between photons and 

absorbing particles) in the collision-based MCRT, the energy partitioning Monte Carlo 

distributes the absorbed energy throughout the pathlength (exponential decaying). Similarly, 

in the pathlength-based method the energy is distributed between absorption and reflection 

when a ray reaches the walls, and between absorption, reflection and transmission when it 

reaches the window. In the latter method, it is also necessary to define a cut-off level to 

establish when the rays have negligible energy and their tracing can be stopped (e.g. a cut-

off level of 99% implies that the ray tracing stops when the energy of the rays is below 1% 

of its initial value. This residual energy is assigned to the cell in which the ray is located in 

that moment, although other strategies can be employed as well.) Of course, both methods 

converge to the exact solution in the limit of an infinite number of emissions and the best 

choice should be the one with the faster convergence. For that, each method has its own 

strengths: In the pathlength-based technique much more information is obtained from each 

ray (i.e., fewer rays are required to achieve convergence), while the CPU usage per ray is 

much smaller in the collision-based. Hence, the best Monte Carlo technique is problem-

dependent and needs to be determined for each particular situation. Further details and 

discussion of the standard and the energy partitioning MCRT can be found, for example, in 

[55]. 

Both Monte Carlo methods have been implemented in the code developed for the 

receiver modeling in this Proyecto Fin de Carrera and the user is free to choose between 

them. This section aims to analyze the performance (product of the variance and the CPU 

time) of both methods when applied to the Small Particle Solar Receiver in order to facilitate 

such a decision. Each Monte Carlo technique has been employed to calculate the solution of 

the same radiative transfer problem one hundred and twenty one times, each of them with a 

different initial seed for the Random Number Generator. This way, an estimate of the 

variance and the CPU time is obtained. For the pathlength-based MCRT, three different cut-
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off levels were employed (99%, 99.9% and 99.99%). Since the performance is expected to 

be a strong function of the radiative properties of the receiver walls, the analysis was 

performed for both black (blackbody) and Al2O3 walls (Figure 12 in Chapter 3 shows the 

spectral emissivity of aluminum oxide.) Finally, since the performance may also depend on 

the wavelength, this studio was split up into two sections: Rays coming from the heliostat 

field and rays emitted from inside of the receiver.  

A FORTRAN code was written to post-process all the data and calculate the average, 

the variance and the CPU time per ray for each Monte Carlo strategy. Table 5 shows the 

performance (defined as the product of the variance and the CPU time per ray, and 

expressed in W
2
-s) of different variables for the collision and the pathlength MCRT when 

the walls are modeled as blackbodies, both for the rays coming from the heliostat field and 

for the rays emitted from inside of the receiver. Table 6 collects the same information as 

Table 5 but with Al2O3 walls. From these tables it can be concluded that the pathlength-

based MCRT has better performance than the collision-based in all the situations except for 

the rays emitted from inside of the receiver when using Al2O3 walls (note that the lower the 

performance is, the better.) This result is expected since, when modeling the walls as 

blackbodies, the rays are absorbed whenever they reach a wall and the CPU time is limited 

by this fact. Hence, the fact that much more information is obtained from each ray with the 

pathlength-based Monte Carlo makes it a better choice. However, the CPU time increases 

excessively when using the pathlength-based MCRT and Al2O3 walls since the ray tracing is 

not stopped by any perfect absorber. This is especially true for the rays emitted from the 

receiver as they have longer wavelengths and then the absorptivity of the carbon particles is 

lower. As for the best cut-off level of the pathlength-based Monte Carlo, the 99% option 

showed the best performance regardless the wavelength and the radiative properties of the 

walls. Also, the performance of the radiative source terms is lower (better) for short 

wavelengths (i.e. for the rays coming from the heliostat field) than for long wavelengths; 

while the opposite is true for the variable window losses. In any case, the difference between 

both MCRT techniques is below 50% and there is no order-of-magnitude gain as occurred 

with an optimized number of emissions from each cell (Section 3.7.1.3) and as will occur 

with an optimized, adaptive coupled solution procedure (Section 5.4). 

3.7.3. Programming Efficiency 

3.7.3.1. Inversion of Cumulative Distribution Functions 

The expression of some Cumulative Distribution Functions can be inverted analytically 

and the vector   can be easily calculated by evaluating the inverse of the CDF at    (the 

random number) during the ray tracing. However, other CDFs cannot be explicitly inverted 

and a transcendental equation needs to be solved to determine  . While many numerical 

methods (e.g. bisection, secant or Newton-Raphson methods) can be employed to solve this 

equation, it would be a very inefficient way to perform since this procedure needs to be  
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Variable Collision 

 

Pathlength 

 

99.00% 99.90% 99.99% 

RAYS FROM THE HELIOSTAT FIELD 

Window Losses 2.11E+02 1.56E+02 1.98E+02 1.43E+02 

Fluid Source Term 9.61E+02 1.83E+02 2.15E+02 1.84E+02 

Exterior Wall Source Term 4.83E+02 2.84E+01 4.09E+01 3.03E+01 

Outlet Tube Source Term 2.40E+02 3.19E+01 4.00E+01 4.08E+01 

Right Wall Source Term 1.38E+02 7.13E+00 9.48E+00 9.64E+00 

Left Wall Source Term 4.03E+01 1.20E+01 1.71E+01 1.76E+01 

Window Source Term 2.93E+01 2.26E+00 3.23E+00 2.42E+00 

RAYS EMITTED FROM INSIDE OF THE RECEIVER 

Window Losses 2.19E+02 8.57E+01 9.97E+01 1.16E+02 

Fluid Source Term 2.14E+03 5.23E+02 4.50E+02 6.54E+02 

Exterior Wall Source Term 3.39E+03 2.24E+03 2.38E+03 2.27E+03 

Outlet Tube Source Term 1.07E+03 1.16E+03 1.21E+03 1.09E+03 

Right Wall Source Term 1.26E+03 1.05E+03 1.29E+03 1.18E+03 

Left Wall Source Term 9.01E+02 8.32E+02 9.92E+02 8.41E+02 

Window Source Term 5.03E+02 4.25E+02 4.57E+02 5.09E+02 

Table 5 – Performance (W
2
-s) of different variables for the collision and the pathlength MCRT when the walls 

are modeled as blackbodies. 

Variable Collision 

 

Pathlength 

 

99.00% 99.90% 99.99% 

RAYS FROM THE HELIOSTAT FIELD 

Window Losses 2.01E+02 1.47E+02 2.70E+02 5.33E+02 

Fluid Source Term 3.77E+02 1.68E+02 3.03E+02 6.79E+02 

Exterior Wall Source Term 8.80E+01 1.81E+00 3.28E+00 4.37E+00 

Outlet Tube Source Term 5.73E+01 3.67E+00 5.77E+00 1.23E+01 

Right Wall Source Term 3.93E+01 8.31E-01 1.38E+00 2.32E+00 

Left Wall Source Term 8.91E+00 7.98E-01 8.05E-01 2.08E+00 

Window Source Term 2.44E+01 3.07E+00 4.28E+00 1.09E+01 

RAYS EMITTED FROM INSIDE OF THE RECEIVER 

Window Losses 8.715E+01 7.184E+01 1.163E+02 2.423E+02 

Fluid Source Term 1.112E+03 8.517E+02 9.009E+02 2.673E+03 

Exterior Wall Source Term 1.051E+03 1.260E+03 1.481E+03 3.012E+03 

Outlet Tube Source Term 3.132E+02 8.012E+02 8.989E+02 1.619E+03 

Right Wall Source Term 3.133E+02 5.701E+02 7.002E+02 1.142E+03 

Left Wall Source Term 2.053E+02 4.006E+02 4.123E+02 1.088E+03 

Window Source Term 2.785E+02 4.649E+02 6.512E+02 1.196E+03 

Table 6 – Performance (W
2
-s) of different variables for the collision and the pathlength MCRT when using 

Al2O3 walls. 
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repeated several times per ray. Hence, for the sake of computational efficiency, the CDF 

with no analytical inverse are handled as described in Algorithm 2. 

Algorithm 2 

1. Calculate     
  (  ) prior to starting the simulation, where    is a vector of   numbers uniformly 

distributed over       (typically             depending on the variable   ) 

2. Store     
  (  ) in proper vectors and matrices. 

3. Pick a random number (  ) when    needs to be determined during the ray tracing. 

4. Linearly interpolate the values     
  (  ) calculated in Step #1: 

    
       

    
           

      

     

(     ) 

Where       (  )         and       (  )        . A binary search algorithm is used to 

find    and   . 

3.7.3.2. Binary Search 

The previously mentioned Cumulative Distribution Functions with no analytical inverse 

(e.g. the emission properties of the air-particle mixture, walls and window) are calculated 

prior to start the simulation (and stored in external .dat files) and need to be interpolated 

during the ray tracing. Hence, it is necessary to search these properties in multidimensional 

matrices several millions of times per iteration. To efficiently do so, a low complexity 

technique is required. In particular, the binary search algorithm [63], a dichotomic divide 

and conquer search algorithm with average case performance         (  denotes the size of 

the array to be explored), is employed whenever possible. 

3.7.3.3. Other considerations 

On account of the structured character of the Monte Carlo mesh, all properties are stored in 

three-dimensional matrices that need to be looped repeatedly over the code. To reduce the 

CPU usage of this loops, the internal loop refers to the first index of the matrix in the Monte 

Carlo code (FORTRAN), while the opposite strategy is employed in the User-Defined 

Functions (C). Furthermore, some if statements were introduced and some 

equations/algorithms were simplified to avoid unnecessary computations. 

3.8. Model Validation 

With the availability of commodity computer hardware and software, the computation of 

solution to engineering problems has become a seemingly effortless task. However, this 

feeling of overconfidence is easily shattered when facing new problems and developing new 

models for its computer solution, such as the in-house Monte Carlo Ray Tracing code 

developed for the Small Particle Solar Receiver modeling. Indeed, there are three essential 

questions that must be answered before our simulation results can be trusted [64]: Does the 

mathematical model represent the relevant phenomena? Does the algorithm reproduce a 



Pablo Fernández del Campo  Universidad de Valladolid 

75 

 

suitable approximation to the solution of the mathematical model? Does the software 

actually implement the solution algorithm? 

The validity of the quasi-steady form of the Radiative Transfer Equation to model the 

radiation heat transfer in participating media and the Monte Carlo Ray Tracing method to 

solve the RTE have been repeatedly demonstrated [51,53]. Hence, the two first questions 

have a favorable response. Nonetheless, to guarantee the correctness of our simulation 

results is still necessary to prove that the software actually implements the MCRT algorithm. 

First, both black box tests and white (or glass) box tests were carried out under a number of 

different inputs to guarantee the correct programming of the different subroutines (unit 

testing). Then, the whole program was tested through integration tests. 

Finally, and more importantly, the Monte Carlo software was verified and validated 

(V&V) by simulating several thermal radiation problems with known solution.  

 Test #1: Surface to surface radiation exchange between two black, parallel, infinite 

plates at the same temperature. 

 Test #2: Surface to surface radiation exchange between two black, parallel, infinite 

plates at different temperatures. 

 Test #3: Surface to surface radiation exchange between two black, coaxial, infinite 

cylinders at the same temperature. 

 Test #4: Surface to surface radiation exchange between two black, coaxial, infinite 

cylinders at different temperatures. 

 Test #5: Radiation heat transfer between two black, parallel, infinite plates at different 

temperatures surrounding a participating, gray medium [51]. 

 Test #6: Radiation heat transfer between two black, coaxial, infinite cylinders at 

different temperatures surrounding a participating, gray medium [53]. 

The radiative heat transfer was predicted successfully by our code in all the six previous 

situations. For example, Figure 18 shows the dimensionless emissive power distribution, 

  , obtained in Test #5, which perfectly matches the analytical solution (see Appendix F) 

for the two optical thicknesses        (red) and      (green) tested. The results for the 

other tests are presented in Appendix F. 

Several additional checks were also carried out to test those pieces of code unexplored 

by the previous benchmarks with successful results for all of them: Tracing the rays from the 

heliostat field, calculating the radiative properties of the air-particle mixture via Mie theory, 

randomness of the pseudorandom numbers generated by the RNG, etc. Furthermore, the 

MCRT software checks some relevant variables during the ray tracing and it is able to report 

when a ray is not been properly traced. This way some imprecisions in other codes 

developed by our group were found. 
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Figure 18 – Dimensionless emissive power distribution in the gas (Test #5 of the MCRT validation). 

3.9. Other applications of the MCRT code: Radiative heat transfer inside 

the window 

The Monte Carlo Ray Tracing code developed for the Small Particle Solar Receiver was 

modified so that it can also be applied to the radiation heat transfer in the window of the 

receiver. The main modifications introduced in the MCRT software were: 

- Implement the optical properties of the fused quartz as a function of the wavelength. 

- Implement the equations to calculate the reflectivity of the interfaces air-glass and glass-

air (based on the electromagnetic theory), taking into account the possibility of total 

internal reflection in the latter case. 

- Mapping the position and direction of the rays from the curved window to the 

“equivalent” flat window
18

. 

- Load and trace the rays that enter into the window from the receiver, which is done in a 

similar fashion as described in this chapter for the rays from the heliostat field. 

- Simplify and/or remove those parts of the code unnecessary for the window (e.g., 

scattering or Mie theory subroutines, etc.) in order to reduce the CPU time. 

                                                           
18

 A circular, plane window whose radial coordinate equals the arc-length parameter of the intersection of the 

inner surface of the actual window and a         plane.  
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The thermal analysis of the window is being performed by Alex Whitmore using an in-

house code that includes all the modes of heat transfer and the possibility of running 

transient analysis [65], in which the Monte Carlo code is simply the sub-model responsible 

for the radiation heat transfer calculation. The thermal study of the window is important for 

the following reasons: 

1. Determine and reduce the thermal stresses in the window (for which the temperature 

field is required). 

2. Determine and reduce the thermal losses in the receiver (due to radiation and convection 

to the outside). 

3. Possible use of an anti-reflective coating if the temperature of the window was low 

enough (see Section 9.7). 

Note, however, that the application of the MCRT method to the window involves 

several approximations that might need to be fixed if higher accuracy were required: 

1. The mapping function from a spherical cap window to the “equivalent” flat window is 

not an isometric transformation, i.e. the distances between points are not preserved. This 

implies that neither the volume (and thus nor the emissive power) nor the optical 

thickness of the cells are preserved. Furthermore, the Cumulative Distributed Functions 

for the equivalent geometry will not exactly reproduce the spatial distribution of the 

emitted radiation. Although for a cap angle of 45º the error is small (for example, 2-3% 

in the volume of the cells, on average), both the volume and the optical thickness could 

be easily fixed with reasonable success by using proper correction factors. The CDF 

issue would require, however, a more involved solution. 

2. The refracted angle and the transmissivity of the interface glass (absorbing) – air (non-

absorbing) are calculated based on the behavior of electromagnetic waves going from a 

non-absorbing to an absorbing medium by switching the indices of the mediums. 

However, the process is not quite linear and the behavior of electromagnetic waves from 

an absorbing to a non-absorbing medium is more involved. 

3. The electromagnetic spectrum is divided into   bands equally distributed between 0.1 

μm and 50 μm, while a non-uniform band distribution (more dense in the low 

wavelength region) would reduce the CPU time in the search of properties (remember 

the average performance of the binary search algorithm is        ) and improve the 

accuracy of the solution due to the higher gradients of the complex refractive index of 

the quartz in the solar spectrum than in infrared wavelengths [21]. 
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Chapter 4 

Fluid Dynamics Model 

As outlined in Chapter 2, the commercial CFD software ANSYS Fluent is employed to 

solve the mass, momentum, and overall energy equations of the fluid flow, as well as the 

extra equations required to represent the turbulent properties of the flow and close the 

problem. In this chapter, we will present and discuss the CFD mesh, the CFD solver, the 

turbulence model and the boundary conditions employed to simulate the Small Particle Solar 

Receiver. 

4.1. CFD Mesh 

After generating the geometry in proper CAD Software (SolidWorks), the geometrical 

domain needs to be discretized in order to numerically solve the governing PDEs of the fluid 

flow. This task was carried out in ANSYS Meshing Software through the ANSYS 

Workbench. 

Mesh generation is one of the most critical aspects of engineering simulation, especially 

in Computational Fluid Dynamics. Too many cells may result in long solver runs, and too 

few may lead to inaccurate results as some flow features might not be captured. Hence, a 

compromise between these requirements needs to be achieved to obtain the right mesh for 

each situation. Moreover, fluid dynamics simulations require very high-quality meshes in 

both element shape (cell squish, aspect ratio, skewness) and smoothness of size changes, 

which plays a significant role in the accuracy, stability, rate of convergence and CPU time 

required to perform the numerical computation. 

The best solution for the simulation of the Small Particle Solar Receiver is a hybrid 

mesh: A structured hexahedral mesh in both inlet and outlet zones (where the flow moves 

essentially parallel to the axis of symmetry) to prevent numerical diffusion and improve the 

accuracy of the solution, and a non-structured tetrahedral mesh for the recirculation zones. A 

drawback of this hybrid character of the mesh is that non-conformal interfaces do exist, 

which may lead to interpolation errors. After generating the previous mesh in ANSYS 

Meshing Software, the boundary layer meshing is performed directly in ANSYS Fluent 

through Boundary Adaption
19

. Further adaptive refinement may be required when the flow 

field is known. 

                                                           
19

 A grid refinement method based on adapting the mesh in the proximity of specified surfaces (in our case, the 

window, the outlet tube and the walls for the boundary layer mesh generation.) 
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Figure 19 – Transverse section of the mesh in the inlet and outlet zones (left) and in the recirculation zone 

(right). Note the presence of the outlet tube in the left image and the much finer mesh in the right image to 

capture the features of the flow in the recirculation zone prior to entering the outlet tube. 

While the meshes of the different designs analyzed in this Proyecto Fin de Carrera (see 

Chapter 7) are qualitatively similar, the grid size was varied (both because of the different 

volume of each design and the improved knowledge of the flow features in the last 

simulations.) The number of cells of the CFD mesh for the different designs of the Small 

Particle Solar Receiver is shown in Table 7. Note that the thermal efficiency of the receiver 

is virtually insensitive to the number of CFD cells as long as a minimum number of cells is 

used [20].  

Model # Cells 

Parametric study of the operating conditions (Section 7.1) 413,487 

Design optimization (Section 7.2) 

- Baseline 

- Ellipsoidal window 

- Geometry #2 

- Geometry #3 

 

1,656,610 

1,216,320 

2,181,763 

2,346,852 

Table 7 – Number of cells of the CFD mesh for the different designs of the Small 

Particle Solar Receiver presented in this Proyecto Fin de Carrera. 

Finally, as advisable for most CFD simulations, both inlet and outlet have been extruded 

0.5 m away from the domain so that the inlets/outlets of the CFD model are far enough from 

the region of interest and their influence on the solution is reduced. 

4.2. CFD Solver 

Two solver technologies are available in ANSYS Fluent to numerically solve the continuity, 

momentum and other scalars (energy, k, ω, etc.) equations: pressure-based solver and 
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density-based solver [66]. While both solvers are currently valid for the vast majority of 

fluid flows, one of them usually performs better than the other depending on the particular 

flow field. The pressure-based solver has been historically preferred for low-speed 

incompressible and mildly compressible flows and it is thus employed for the Small Particle 

Solar Receiver due to the incompressibility (as for pressure differences) of the flow. 

The pressure-based solver can solve the fluid flow problem in either a segregated or 

coupled manner. The former is a semi-implicit solution method (momentum and pressure 

correction equations are solved separately) with slow convergence compared to the latter, a 

full implicit method
20

 that solves the momentum and pressure-based continuity equations 

together [66]. However, the segregated method is more memory-efficient (its memory 

requirements are 1.5-2 times fewer than the ones of the density-based solver) because the 

individual governing equations are solved sequentially and only one discretized equation 

needs to be stored in the memory simultaneously. Since the computational limitation was 

memory rather than CPU capacity, the segregated pressure-based solver yields to more 

simulations per unit time and is then used. In particular, the SIMPLE algorithm is employed 

as convergence is limited by the convergence of the radiative source term field rather than 

by the pressure-velocity coupling. 

The under-relaxation strategy utilized is also an important parameter of the CFD solver 

and is presented and discussed by convenience in Section 5.2 of Chapter 5. 

4.3. Discretization Scheme 

ANSYS Fluent only stores discrete values of the scalar variables (pressure, x-velocity, etc.) 

at the cell centroids, so that the face values (required for the convection terms) must be 

interpolated using a spatial discretization scheme. Moreover, gradients are needed to 

construct values of scalars at the cell faces, compute secondary diffusion terms and calculate 

velocity derivatives. For that, first-order accuracy and second-order accuracy schemes are 

available. A first-order discretization generally yields better convergence, but second-order 

schemes usually produce more accurate results. Nonetheless, the optimum choice of the 

discretization scheme is mesh- and problem-dependent. 

A comparison was performed between first and second order discretization schemes for 

the particular case of the Small Particle Solar Receiver, with slower rate of convergence for 

the second-order schemes in all the cases. As for the accuracy of the results, no significant 

effect was observed for turbulent scalars, while small differences were found for the 

momentum and energy variables. This result is somehow expected since, with the exception 

of the recirculation zones, the flow is aligned with the mesh and the numerical diffusion is 

                                                           
20

 The full implicit coupling is achieved through an implicit discretization of pressure gradients term in the 

momentum equations, and an implicit discretization of the mass flux, including Rhie-Chow pressure 

dissipation terms [66]. 



Pablo Fernández del Campo  Universidad de Valladolid 

81 

 

low. Therefore, the discretization schemes employed for the different scalars are the ones 

shown in Table 8. In some cases, when higher accuracy was desired, second-order schemes 

were used for turbulent scalars as well. 

Gradient Least Squares Cell Based 
(1) 

Pressure Standard 

Momentum Second-Order Upwind 

Turbulent Kinetic Energy First-Order Upwind 

Specific Dissipation Rate First-Order Upwind 

Energy Second-Order Upwind 

Table 8 – Discretization scheme for the different scalars employed in the CFD solver. 

(1)
 On irregular (skewed and distorted) unstructured meshes, like in the recirculation zone of 

the Small Particle Solar Receiver, its accuracy is comparable to the one of the node-based 

gradient (and vastly superior compared to the cell-based gradient) and it is computationally 

less expensive [66]. 

4.4. Turbulence Model 

The Shear Stress Transport (SST) formulation of the κ-ω turbulence model [23,33,67] is 

employed. The κ- and ω-equations were introduced in Eq. 2-1, while the closure 

coefficients, auxiliary relations and model constants of the SST k-ω Turbulence Model 

employed in the numerical modeling of the Small Particle Solar Receiver are presented in 

Appendix G. This two-equation eddy-viscosity turbulence model has become very popular 

in the CFD community over the last years. The SST formulation combines the best of the κ-

ε and the Standard κ-ω models. On the one hand, the use of a κ-ω formulation in the inner 

parts of the boundary layer makes the model directly usable all the way down to the wall 

through the viscous sub-layer. On the other hand, the SST formulation switches to a κ-ε 

behavior in the free-stream and thereby avoids the common κ-ω problem that the model is 

too sensitive to the inlet free-stream turbulence properties. Furthermore, this formulation 

exhibits a good behavior in adverse pressure gradients and separating flows, the latter 

present in the Small Particle Solar Receiver in both the front corner and the inlet of the 

outlet tube. Nonetheless, it does produce overly large turbulence levels in regions with large 

normal strain rates –like stagnation near the corner and high-acceleration regions prior to 

entering the outlet tube–. This tendency, however, is much less pronounced than in a κ-ε 

model and has little or no influence in the main outputs of the model, such as the outlet 

temperature, the thermal efficiency, the pressure drop, and the wall temperature distribution. 

At this point, the utilization of Large Eddy Simulation (LES), Direct Numerical Simulation 

(DNS) and the like is not considered as an option due to the exceedingly high CPU time 

required to achieve convergence with such turbulence models and the Monte Carlo Ray 

Tracing code. However, it constitutes an interesting alternative to be explored in the future 

(see Future Work, Chapter 9). 
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4.5. Boundary Conditions 

The boundary conditions, summarized in Table 9, were carefully selected to reflect the 

actual conditions of the receiver as close as possible. 

 Momentum B.C. Thermal B.C. Turbulence B.C. 

Inlet Mass Flow Rate 
(1)

 Thermal Dirichlet B.C. 

     
(2)

 
     

Inlet hydraulic diameter 
(1)

 

Outlet Pressure Dirichlet B.C. 
(3) 

Thermal Dirichlet B.C. 
(4,5)      

(4)
 

                
(4)

 

Walls No-Slip Condition See below 
(6) 

Does not apply
 

Window No-Slip Condition Thermal Dirichlet B.C. 

           
(7)

 

Does not apply 

Table 9 – Boundary conditions employed in the CFD model. 

(1)
 The particular value of the boundary condition is simulation-dependent. 

(2) 
The inlet surface participates in the radiation heat transfer and a net radiative heat flux 

does exist on it. Hence, the inlet temperature is adjusted based on such a radiative source 

term via User-Defined Function (UDF). See Section 5.1 in Chapter 5 for further details and 

discussion. 

 (3)
 Even neglecting the absorption and emission of the air-particle mixture, the flow in the 

outlet section is neither hydrodynamically nor thermally fully developed. 

  

 
       

 
 ⁄ ⇒          

 
 ⁄                        (4-1) 

For                           ⁄ ,           and  ̇        (i.e., 

            ). 

Therefore, the pressure-outlet boundary condition from ANSYS Fluent is used to allow 

axial diffusive transport on the outlet surface. This is simply a Dirichlet boundary condition 

to specify the pressure on the outlet surface.  

(4)
 Only required when recirculation on the outlet surface occurs (recall an upwind 

interpolation scheme is employed), which does not exist in the final solution but may appear 

during the solution procedure. An estimate of the actual temperature and turbulence intensity 

on the outlet is employed to improve convergence if recirculation appears through the 

iterative procedure. 

(5)
 Actually, the outlet temperature is modified when post-processing the simulation results 

based on the radiative source term calculated by the MCRT code on the outlet surface (in a 

similar way as with the inlet temperature). In particular, the outlet surface is modeled in 
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Monte Carlo as a blackbody at the same temperature as the outlet air to simulate the deep 

cavity constituted by the piping. 

 (6)
 The walls of the Small Particle Solar Receiver are modeled as volumetric media in the 

CFD model, rather than as boundary surfaces, for several reasons. First, three-dimensional 

heat transfer does exist in the receiver, along the outlet tube and along the walls. Second, 

this way it is possible to take advantage of the ANSYS Fluent’s Under-Relaxation Factors to 

clip the wall temperature variations between iterations
21

. Otherwise, oscillations in the 

numerical solution may appear due to the high sensitivity of the radiation heat transfer to the 

wall temperature, as will be discussed in Section 5.2 of Chapter 5. It should be noted that an 

approximation has been introduced in this point: The radiative source term is supposed to be 

uniformly distributed in the thickness of the walls, while for opaque bodies surrounded by 

semitransparent media absorption/emission actually occurs in a thin layer of a few Å 

(metals) or μm (dielectrics). To verify the validity of this assumption, a one-dimensional 

analytical model has been developed to predict the average wall temperature as a function of 

the thickness of the layer in which the radiative source term is supposed to be uniformly 

distributed (Eq.4-2.a). The actual temperature of the inner surface can be calculated taking 

thicknesses arbitrarily small (   ) in Eq. 4-2.a. The ratio between the average temperature 

using a thickness   (Eq. 4-2.a) and the actual temperature of the inner surface of the wall, 

                   ⁄ , for a stainless steel wall is shown in Figure 20. For a maximum 

error of 1% in the estimate of the emissive power, the thickness of the layer should be not 

greater than 3 cm for stainless steel walls and not greater than 3 mm for zirconia walls. 

Further analysis of the temperature profile revealed that the inner wall temperature is 

approximately equal to the exact solution regardless the thickness. Therefore, thicker layers 

are acceptable as long as only the CFD cells closer than a distance ε to the inner wall surface 

(around 1 cm and 1 mm respectively) are considered when averaging the temperature. 

Further details and discussion on the sensitivity of the inner wall temperature with respect to 

the thickness of the layer in which the radiative source term is supposed to be uniformly ( ) 

are presented in Appendix H. 

      
 

 

  

  
  

 

 
       

   
   

 
     

  
  

                 

  (  
    

 ̂   
)       

 

        
     

 
                          

  ( ̂        )   ̂        
 

 

(4-2) 

                                                           
21

 When treated as surfaces in ANSYS Fluent, the temperature is calculated based on the thermal boundary 

condition and the Under-Relaxation of the temperature does not clip the wall temperature differences between 

consecutive iterations. 
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Figure 20 – Temperature ratio,                    ⁄ , in stainless steel walls. 

On the fictitious outer surface of the CFD model’s walls, the convective heat transfer 

coefficient was chosen so that the thermal resistance equals the combined conduction and 

convection thermal resistance of the non-computationally modeled domain (Eq. 4-3).  

 

 ̂     ̂  
 

    ̂ 
  

 
 

    

 (4-3) 

Where the effective exterior heat transfer coefficient,  ̂   , is a function of the thickness 

of the CFD model’s walls,  ̂ . 

 (7)
 The temperature of the window must be kept below 800ºC to ensure the integrity of the 

quartz. For this reason a Dirichlet thermal boundary condition             
22

 is used on 

the inner surface of the window. This way, the thermal resistance to achieve the temperature 

goal can be calculated. For the simulations of Section 7.2, the preliminary results of the 

window heat transfer model developed by Alex Whitmore [65] were available and the 

temperature of the window was set at 850 K for       and at 800 K for      . Finally, it 

should be pointed out that the way of keeping the window’s temperature on target is via 

active cooling and is currently under research by Ara Hovhannisian, a graduate student in 

our group. 

 

 

                                                           
22

 The maximum temperature of the window is reached on the inner surface, so that the thermal boundary 

condition in the CFD model should equal the upper temperature limit of quartz. 
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Chapter 5 

Coupling between the MCRT method and the CFD solver 

As discussed in Chapter 2, the governing equations of the fluid flow and the radiation heat 

transfer are, by their own nature, coupled. As it can be observed from Eq. 2-1, the energy 

equation –numerically solved by ANSYS Fluent– depends on the divergence of the radiative 

heat flux (third term in Eq. 2-1.c), while the Radiative Transport Equation –statistically 

solved by our in-house MCRT code– depends on the temperature field (both     and some 

radiative properties in Eq. 2-1.f are a function of the temperature.) On account of this 

coupling between the Navier-Stokes (mass-, momentum- and energy-) equations and the 

RTE, it is necessary to couple the CFD solver and the MCRT code and iterate alternatively 

until convergence. A schematic representation of the solution procedure was illustrated in 

Figure 3, presented in Chapter 2. 

5.1. User-Defined Functions to Couple the CFD Solver and the Monte 

Carlo Method 

Several User-Defined Functions (UDFs) have been programmed in the C programming 

language to couple the CFD solver and the MCRT code. A User-Defined Function is a 

function provided by the user to interact with the CFD solver by providing external inputs, 

such as boundary conditions, material properties or source terms. In particular, the two main 

purposes of the UDFs utilized to couple the CFD solver and the MCRT code are the 

following: 

 Impose the radiative source term calculated by the Monte Carlo method into the overall 

energy equation solved by ANSYS Fluent. 

 Calculate the average temperature in every cell of the Monte Carlo grid –much coarser 

than the CFD mesh–, which the MCRT code needs to solve the RTE. 

In order to do so, the User-Defined Functions described below are required. The main 

difficulty of all of them arises from the fact that they need to allow for an arbitrary 

axisymmetric geometry of the solar receiver, as well as different types of windows (flat, 

ellipsoidal or a spherical cap.) Moreover, it can accommodate the presence of an outlet tube 

for the air-particle mixture as long as its radius is smaller than the window radius. Hence, the 

programming must be general enough to consider all the possible situations and geometries. 

Finally, they can be used interchangeably for either the 2-D (axisymmetric) or the 3-D 

version of the CFD solver. 
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DEFINE_EXECUTE_ON_LOADING: 

This User-Defined Function is executed at the same time the UDFs are loaded in ANSYS 

Fluent, i.e. when first hooking the UDFs to the Fluent model or when opening a Fluent file 

with the UDFs already attached. The main goals and steps performed in this UDF are 

collected in the subsequent paragraphs. 

1. Generate the Monte Carlo mesh via FORTRAN subroutine. 

2. Calculate the volume of each Monte Carlo cell in the CFD model, i.e. the volume of all 

the CFD cells inside a MCRT cell (recall that the MCRT mesh is coarser than the CFD 

mesh.) This process is split up into five zones: Air-particle mixture zone, exterior wall 

zone, left wall zone, outlet tube zone and window zone. The first zone is a fluid zone, 

while the other four are solid zones. Note, however, that the window is currently modeled 

as a boundary surface and the volume calculation is not performed in the simulations 

presented here (albeit the code is available to be eventually used when the window is 

modeled as a solid volume.) For each of these zones, all the CFD cells are looped 

following the subsequent procedure: 

 Calculate the global Cartesian coordinates of the centroid of the CFD cell. 

 Convert them to global cylindrical coordinates. 

 Determine whether the CFD cell is in the zone we are considering (air-particle 

mixture, outlet tube, etc.) If not, go to the next CFD cell of the loop. If so: 

 Determine the indices that characterize the Monte Carlo cell (recall the MCRT 

mesh is structured) in which the CFD cell is located. For that, Algorithm 4 is used. 

 In some cases, the radial and/or axial indices previously calculated are relative to 

the zone we are considering, instead of the global indices of the MCRT mesh. In 

such cases, the indices must be converted from local to global indices. 

 Add the volume of the CFD cell to the corresponding Monte Carlo cell in which it 

is located, using the indices just calculated. 

3. Load the initial radiative source term and inlet temperature fields (specified via external 

files). 

4. Show the initial radiative source term and inlet temperature fields in the ANSYS Fluent 

console to check whether they were successfully loaded. The kind of cell (air-particle 

mixture, window, left wall, exterior wall, outlet tube, inlet surface or outlet surface) is 

shown as well to facilitate the interpretation. 
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5. Equate the historical value of the radiative source term field and the inlet temperature 

field (necessary for future under-relaxation, see Section 5.2) to the initialization values. 

6. Show through the ANSYS Fluent console a brief description of the features of the 

simulation (date, time of the day, mass flow rate, mass loading, radiative properties of the 

walls, etc.) to check whether the right UDF was loaded. 

DEFINE_SOURCE: 

These UDFs are executed before every iteration of the CFD solver to specify the 

radiative source term to be included in the energy equation (the UDF is called one time for 

each CFD cell.) Four different User-Defined Functions, one per volumetric zone, are 

required: air-particle mixture zone, exterior wall zone, left wall zone and outlet tube zone. 

Moreover, a fifth UDF is available for the window if it were eventually modeled as a 

volume (to calculate conduction heat transfer), rather than as a boundary surface with a 

proper Dirichlet boundary condition for the temperature. Each of these functions was 

programmed to accommodate the differences between the five zones. Nonetheless, all of 

them essentially follow the next three steps: 

1. Calculate the global Cartesian coordinates of the centroid of the CFD cell. 

2. Convert them to global cylindrical coordinates. 

3. Determine the indices that characterize the Monte Carlo cell (recall the MCRT mesh is 

structured) in which the CFD cell is located. Algorithm 3 illustrates the general procedure 

to do it when the CFD cell is located in a zone whose corresponding MCRT cells are two-

dimensional (i.e., the outlet tube, the exterior wall, the left wall and eventually also the 

window); while Algorithm 4 shows the process to be employed in CFD cells whose 

corresponding MCRT cells are three-dimensional (i.e., the air-particle mixture). 

DEFINE_PROFILE: 

While the outlet temperature of the recuperator in a recuperated gas turbine engine varies 

with a number of factors [61] (e.g., solar thermal input, guide vane angle or recuperator 

performance), an outlet temperature of 700 K was kept constant in this Proyecto Fin de 

Carrera in an effort to evaluate the solar receiver itself. However, the inlet surface of the 

receiver participates in the radiation heat transfer and a net radiative heat flux does exist on 

it; so that the inlet temperature of the receiver needs to be modified based on such a radiative 

source term. 
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Algorithm 3 

1. Calculate the azimuthal index
23

: 

         ⁄   

A do while loop is required to ensure that the azimuthal coordinate is such that   
      , since ATAN2 may return     or     . 

2. Calculate the second index, i.e. the axial index for the outlet tube and the exterior wall or 

the radial index for the left wall and eventually the window. This is easily accomplished 

since the second coordinate of the nodes is known and does not depend on the azimuthal 

coordinate. 

4. Calculate the radiative source term in that Monte Carlo cell using the indices just 

calculated, and under-relax it if necessary. This is the source term that the CFD solver 

will use in the overall energy equation. 

5. Add the radiative source term passed to ANSYS Fluent in order to eventually check 

whether the source terms in the MCRT code and in ANSYS Fluent match. 

 

 Algorithm 4  

1. Calculate the azimuthal index
23

. 

As in Algorithm 3, a do while loop is required to ensure that the azimuthal coordinate is 

such that         , since ATAN2 may return     or     . 

2. Determine the type of cell (air-particle mixture, exterior wall, etc.) In the case of the air-

particle mixture, it is also necessary to determine the type of cell (Type 1, 2 or 3). 

3. Calculate a second index:  

- For the outlet tube, the exterior wall and the air-particle mixture’s cells of Type 1 or 

2: Axial index. 

- For the left wall, the air-particle mixture’s cells of Type 3 and eventually the 

window: Radial index. 

In both cases this is easily accomplished since the second coordinate of the nodes is 

known and does depend neither on the azimuthal index nor on the third index to be 

determined in Step #4. 

4. In the case of the air-particle mixture cells (three-dimensional cells), calculate the third 

index: The radial index in cells of Type 1 and 2, or the axial index in cells of Type 3. 

This is relatively straightforward as it is possible to determine (although it may be not 

trivial) the minimum and maximum value of the third coordinate of the Monte Carlo 

cells once the first and second coordinates are known (Steps #1 and #3). 

This UDF, which is called before every iteration of the CFD solver and for each cell on 

the inlet surface, is responsible for imposing such a thermal boundary condition. The way of 

doing it is by identifying the Monte Carlo cell in which the CFD cell of the inlet surface is 
                                                           
23

 The azimuthal index can be calculated directly, instead of having to use a search algorithm, since     is 

constant over the Monte Carlo mesh. Hence, this step can be performed with cost      instead of, at least, 

       . 
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located and under-relaxing the value of the temperature (both in a similar way as in the UDF 

DEFINE_SOURCE): 

1. Determine the indices that characterize the Monte Carlo cell (recall the MCRT mesh is 

structured) in which the CFD cell of the inlet surface is located. The azimuthal index is 

determined first and the radial index later (though, in this case, the indices are not 

coupled and the order may be inverted.) The axial index does not need to be calculated 

since all the cells in the inlet surface correspond with the last axial index of the MCRT 

mesh. 

2. Provide the inlet temperature in that Monte Carlo cell –which is calculated in the MCRT 

code (see Section 3.5, Step #9)– and under-relax it if necessary. 

DEFINE_EXECUTE_AT_END: 

This User-Defined Function is executed after every iteration of the CFD solver. Its main 

goals are to calculate the temperature field in the Monte Carlo grid and execute the MCRT 

code to calculate the radiative heat transfer with the new temperature field. To accomplish it, 

the following steps are performed: 

1. Show on the ANSYS Fluent console and write in an external file the total radiative source 

term passed to each zone of the CFD model (air-particle mixture, outlet tube, exterior 

wall, left wall and window). This information is required for both achieving a better 

understanding of the physics of the radiation heat transfer inside the solar receiver and 

checking whether the UDF properly passes the source term from the MCRT code to the 

CFD solver. 

2. If the MCRT code was called in the previous CFD iteration, the historical value of both 

the radiative source term field and the inlet temperature field are updated to include the 

value in the last MCRT iteration. 

3. Write the radiative source term field and the inlet temperature field in an external file so 

that if ANSYS Fluent is closed (either on purpose or due to a power failure) it is possible 

to continue the simulation from the last iteration performed. 

4. Calculate the mass-weighted average temperature of all the CFD cells that are inside a 

Monte Carlo cell. This process is repeated for all the Monte Carlo cells so that the 

temperature field in the MCRT mesh is obtained. In this step it is necessary to determine 

the zone and the particular MCRT cell in which the CFD cell is located. This process can 

be quite involved and is accomplished in a similar way as the one to calculate the volume 

of every Monte Carlo cell (Step #2 of the UDF DEFINE_EXECUTE_ON_LOADING). 

5. Under-relax the temperature field in the MCRT mesh using the temperature field just 

calculated in Step #4 and the historical value. The historical value is updated as well. 
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6. If the MCRT code needs to be executed (it is not called in all the CFD iterations, see 

Section 5.4) the following operations are required as well: 

 Determine the number of rays to be traced by the MCRT method, both coming from 

the heliostat field and emitted from inside of the receiver. The number of rays to be 

traced varies throughout the iterative procedure as will be explained in Section 5.4. 

 Calculate the initial seed for the Random Number Generator (RNG) of the MCRT 

code using the localtime function. 

 Show in the ANSYS Fluent console and write in an external file the temperature field 

in the MCRT mesh. 

 Execute the Monte Carlo Ray Tracing code. 

 Clip the radiative source term just calculated by the MCRT method whenever 

necessary (excessively low or high values are possible during the iterative procedure 

so that clipping such unrealistic source terms improves convergence.) The information 

about the source terms that are clipped (the Monte Carlo cells where it occurs and the 

energy neglected) is printed in the ANSYS Fluent console and written in an external 

file. In general, this strategy is not necessary to achieve convergence. 

 Show through the ANSYS Fluent console and write in an external file the radiative 

source term field and the inlet temperature field in the Monte Carlo grid (both the ones 

just calculated by the MCRT method and the ones that will be used by the CFD solver 

after under-relaxing the source terms and the inlet temperature.) 

5.2. Under-Relaxation Strategy  

The Under-Relaxation strategy is an important parameter of the CFD solver (Section 4.2), 

but it is treated separately in this chapter since the whole solution procedure (not only the 

fluid flow equations) needs to be strongly under-relaxed and it constitutes an important issue 

that requires a special treatment. 

When using real solar irradiation (or in general non-collimated solar inputs) the walls of 

the solar receiver reach very high temperatures and the radiative heat transfer becomes 

extremely sensitive to their temperature. Consequently, small differences in the wall 

temperature lead to great differences in the radiative heat flux and the divergence of the 

radiative heat flux. Therefore, a strong under-relaxation strategy is required to avoid large 

temperature differences between iterations and achieve smooth convergence to the solution. 

The temperature field and the radiative source term field are under-relaxed before being 

passed to the MCRT code and to ANSYS Fluent respectively; and the equations of the fluid 
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dynamics solved in the CFD solver are under-relaxed as well
24

. Moreover, the inlet 

temperature is also under-relaxed prior to imposing the inlet thermal boundary condition in 

the CFD solver. An overview of the under-relaxation strategy employed is presented below.  

 Under-Relaxation of the temperature field passed from ANSYS Fluent to the MCRT 

code: 

     
   

              
   

           
   

 

     
   

      
     

 

(5-1) 

Where the superscript   denotes the number of iteration of the Monte Carlo Ray Tracing 

method.  

 Under-Relaxation of the radiative source term passed from the MCRT code to ANSYS 

Fluent: 

    
   

               
   

           
   

 

     
   

     
     

 

(5-2) 

Wherein   denotes either the divergence of the radiative heat flux in the 3-D cells 

(        ) or the radiative heat flux through the 2-D cells (         ̂). Since the 

MCRT code is not executed after every CFD iteration (see Section 5.4), the numerical 

values in Eq. 5-2 will be the same in all the iterations of the CFD solver that are performed 

between two consecutive MCRT iterations. 

 Under-Relaxation of the inlet temperature passed from the MCRT code to ANSYS 

Fluent: 

     
   

                 
   

             
   

 

      
   

      
     

 

(5-3) 

Again, since the MCRT code is not executed after every CFD iteration, the numerical 

values in Eq. 5-3 will be the same in all the iterations of the CFD solver that are performed 

between two consecutive MCRT iterations. 

 Under-Relaxation of the fluid dynamics equations in ANSYS Fluent: 

               
   

 (      )         (5-4) 

                                                           
24

 Since the pressure-based solver is used, all equations have an associated under-relaxation factor available to 

be used. 
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Where here the superscript   denotes the number of iteration of the CFD solver,   is a 

fluid flow variable and       is the value calculated, without under-relaxation, after the 

iteration of the CFD solver. Unlike     ,      and      , the smaller the under-relaxation 

factor of a fluid flow variable in ANSYS Fluent is, the greater the under-relaxation is [66]. 

While high values of     ,      and       would require more iterations to achieve 

convergence, they also consider the contribution of the rays traced in the previous iterations; 

which in the limit of convergence (when the temperature field is asymptotically close to the 

exact solution) is acceptable. This implies that much fewer rays can be traced per iteration 

(i.e. much less CPU time per iteration) without loss of accuracy. Actually, the advantages of 

under-relaxing the radiative source term and tracing fewer rays per iteration are apparent: 

This way, the radiative solution is not fully converged for all the temperature fields of the 

solution procedure, but rather the fluid flow and radiative solutions converge simultaneously 

(without achieving fully convergence in the radiative heat transfer solution in every iteration 

of the solution process.) 

The difficulty resides in determining the under-relaxation strategy that yields the best 

compromise between both effects (less time per iteration vs. fewer iterations) and minimizes 

the CPU time to achieve convergence. An extensive variety of possibilities and strategies 

have been analyzed and compared in order to minimize the simulation time. The optimum 

under-relaxation parameters obtained from that analysis are presented in Table 10. 

Equation Under-Relaxation Factor 

Temperature (    ) 0.50 

Radiative source term (    ) 0.75 

Inlet temperature (     ) 0.75 

Fluid Flow Variables       25
: 

- Pressure 

- Density 

- Body Forces 

- Momentum 

- Turbulent Kinetic Energy 

- Specific Dissipation Rate 

- Turbulent Viscosity 

- Energy 

 

0.25 

0.90 

1.00 

0.60 

0.70 

0.70 

0.80 

0.95   0.70
26

 

Table 10 – Optimum Under-Relaxation Strategy. 

In reality, the best strategy depends on the ratio solar thermal input vs. mass flow rate 

as the temperature level in the receiver (and thereby the optimum under-relaxation strategy) 

                                                           
25

 Recall that, unlike     ,      and      , the smaller the under-relaxation factor of a fluid flow variable in 

ANSYS Fluent is, the greater the under-relaxation is [66]. 
26

 Varied from 0.95 in the first iterations to 0.70 in the last iterations. 
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mainly depends on that. In general, the higher this ratio is, the higher the temperature is and 

the higher the under-relaxation of the fluid dynamics equations should be. 

5.3. Interpolation Scheme 

The radiative solution is provided in the Monte Carlo mesh by the MCRT code, while 

ANSYS Fluent requires the solution in the CFD mesh. Since the MCRT mesh is 

considerably coarser than the CFD grid (around 600 cells vs. over 1,000,000 cells), it is 

convenient to employ an interpolation scheme between both meshes in order to smooth the 

radiative source term field and improve the accuracy of the final solution. The main 

difficulty associated with the interpolation scheme is that it must be conservative, i.e. the 

integral of the interpolation function over  ̅ must equal the total radiative source term in the 

receiver. If not, the error in the main outputs of the model (useful thermal power and thermal 

efficiency of the receiver) would be of the same order as the error in the total source term 

due to the non-conservative character of the interpolation scheme, which would make the 

simulation results unreliable. 

The difficulty arises from the fact that known conservative interpolation schemes [68-

70] require the solution of a linear system of   equations, where   is the number of cells of 

the objective mesh (in our case the CFD mesh, i.e.            ); which is 

computationally expensive. The only affordable method is the first-order Galerkin projection 

(see [68] for further details on Galerkin projections), which leads to the degenerate case of a 

diagonal matrix and is computationally efficient. However, this first-order Galerkin 

projection is equivalent to simply imposing the radiative source term of the MCRT cell in 

which the CFD cell is located, which means that the source term is actually not interpolated 

and this is the strategy previously employed [20]. 

Therefore, a conservative interpolation scheme should be developed specifically for the 

Small Particle Solar Receiver. While in 1-D this is easily accomplished with a linear 

interpolation scheme, in higher dimensions multi-linear interpolations schemes are not 

conservative. Moreover, in axisymmetric geometries, the volume is linear in the variables  , 

  and   , but not in  . While it is possible to fix the latter problem by employing the 

coordinates         , the mathematical domain of the Monte Carlo cells in such a 

coordinate system would become much more complicated and the difficulty of the overall 

problem would be even greater. 

The mathematical formulation of a possible conservative interpolation scheme for the 

Small Particle Solar Receiver is presented in Appendix I (not shown here for the sake of 

clarity.) Note, however, that all the results presented in Chapter 7 correspond with the case 

with no interpolation scheme, or rather, with just a first-order discontinuous Galerkin 

projection. 
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5.4. Solution Procedure 

In addition to the physico-mathematical difficulties of the model itself, presented in Section 

2.1, there exist important issues associated to the convergence of the coupled model. In 

general, when coupling CFD solvers with external, field-dependent source terms, it is 

necessary to design and optimize the solution procedure in order to prevent numerical 

oscillations and ensure stability and convergence to the solution. Indeed, this known 

potential problem requires special attention in the numerical modeling the Small Particle 

Solar Receiver as explained in Section 5.2. 

In addition to the under-relaxation strategy, it is also necessary to pay attention to the 

way the MCRT method and the CFD solver iterate alternatively. For example, if too many 

Fluent iterations are performed between two consecutive MCRT iterations, the temperature 

field varies too much (between Monte Carlo iterations) and the numerical solution oscillates 

around the actual solution
27

. If too few Fluent iterations are employed, the numerical 

solution smoothly converges to the right solution but the CPU time becomes significantly 

longer for the calculation. Furthermore, the number of rays traced by the MCRT method is 

another variable that can be varied to optimize convergence. Hence, an optimized adaptive 

strategy is employed. This strategy gradually varies both the ratio ANSYS Fluent vs. MCRT 

iterations and the number of rays traced by the MCRT. This way, the solution smoothly 

converges in an optimized CPU time. Table 11 collects the main parameters that are varied 

during the solution process. Moreover, the under-relaxation of the fluid flow variables in the 

CFD solver is adaptively varied during the solution procedure as well (see Table 10). 

 First iterations Last iterations 

Ratio CFD vs. 

MCRT 

Iterations 

10:1 

Reason: The numerical solution rapidly 

goes to a region close to the actual solution. 

1:1 

Reason: This way, the temperature field almost 

does not vary between MCRT iterations and, thus, 

no oscillations in the solution occur. 

 

 

 

Total number of 

rays traced 

200,000 

(100,000 from the heliostat field + 100,000 

emitted from inside of the receiver) 

Reason: The temperature and velocity 

fields are far from the actual solution and 

there is no necessity to reduce the statistical 

uncertainty of the MCRT solution. 

400,000 

(200,000 from the heliostat field + 200,000 

emitted from inside of the receiver) 

Reason: It is possible to keep the statistical 

uncertainty of the final solution on target with 

such a reduced number of rays due to the under-

relaxation strategy of the radiative source term 

(see Section 5.2) 

Table 11 – Main parameters that are varied during the solution procedure (the under-relaxation strategy of the 

fluid flow variables in ANSYS Fluent is varied as well and is shown in Table 10.) 

                                                           
27

 These oscillations can be as large as      K in the outlet temperature, and the exact solution may not even 

be close to the value around which the solution oscillates. 
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It should be noted that integrated and averaged quantities, such as the outlet 

temperature, the thermal efficiency or the pressure drop, frequently converge before the 

local flow variables do and then the simulations do not require the full precision available. 

Therefore, the convergence criterion is based on the convergence of these integrated 

variables rather than the flow field itself. Of course, the fully converged solution would be 

preferred, but the additional computational time required does not justify the negligible 

accuracy gain in the outputs of the model. In particular, the simulation is assumed to be 

converged when the outlet temperature levels out and the oscillations are within the range 

     K. By then, the pressure drop and inlet temperature are already converged. Note, 

however, that if an accurate prediction of the wall temperature were required, some extra 

iterations would be necessary (especially if the walls were treated as blackbodies.)  
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Chapter 6 

Design Optimization 

“Assuming that one has the ability to predict the performance, the 

question then arises of how to modify the design to improve the 

performance”, Antony Jameson [71]. 

In the always highly competitive energy market it is of the utmost importance to optimize 

the design of the different components of a power plant in order to maximize the efficiency, 

reduce the initial and operating costs, increase the lifespan of the different components and, 

in turn, reduce the generation cost of the electricity. For example, increasing one percent the 

efficiency of a 100 MW CSP plant would increase the profit several M$/year. In particular, 

the main purposes of the Multidisciplinary Design Optimization of the 5 MWth Small 

Particle Solar Receiver to be design under the U.S. DOE’S SunShot program are: 

1. Increase the thermal efficiency of the solar receiver (with the ultimate goal of 

maximizing the overall efficiency of the CSP power plant.) 

2. Reduce the wall temperature, which in turn would avoid material problems, increase the 

lifespan of the receiver, reduce maintenance costs and, again, increase the receiver 

efficiency. 

3. Reduce manufacturing, operation and maintenance costs. 

The methodology to perform such a design optimization is the subject of the present 

chapter, while the numerical results will be presented in Chapter 7. 

6.1. Optimization Problem 

The design optimization of the Small Particle Solar Receiver constitutes an extremely 

complex PDE-constrained optimization problem that can be written as in Eq. 6-1: 

   
   

       

             

       

         

 

(6-1) 

Where      is the fluid flow and radiative solution and      is the vector of 

design variables.   are the governing equations of the problem (namely, the N-S equations 
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and the RTE, Eq. 2-1),   is the objective functional (which in general may depend on both   

and  ),   is the set of additional restrictions applied to the design variables (maximum and 

minimum dimensions of the receiver, radiative properties available for the walls, etc.), and   

are the material limits (maximum wall temperature, etc.), which depend on the material itself 

(i.e., on the design variables) and will be imposed via a penalty method. 

6.2. Difficulties of the Design Optimization 

Whenever the sensitivities of the objective function with respect to the design variables can 

be computed, conventional gradient descent methods can be used to find the solution to an 

optimization problem. The main difficulty to optimize the design of the Small Particle Solar 

receiver lies in the fact that the objective functional depends on the problem solution  , 

which in turn depends on the design variables   through the governing equations        

(the Navier-Stokes equations and the RTE, i.e. Eq. 2-1 in compact form.) 

After the dualization of the constraint, the objective function can be written as 

                         and, thus, the sensitivities with respect to the design 

variables are: 

 

  
          ⇔

  

  
 

  

  

  

  
   (

  

  
 

  

  

  

  
)    (6-2) 

The main difficulty is now obvious: In order to compute the sensitivities of the objective 

function it is necessary to compute the sensitivities of   with respect to the design variables, 

which is computationally expensive and unaffordable in our case. One way of avoiding the 

computation of the sensitivities of   with respect to the design variable is by picking   

satisfying Eq. 6-3, which is called the Adjoint Equation. 

  

  
   

  

  
   (6-3) 

Thus, we can readily compute the sensitivities as expressed in Eq. 6-4. 

  

  
    

  

  
 (6-4) 

The Adjoint Navier-Stokes equations are well-known [72-74], while the RTE adjoint 

operator is such that                 [75,76], where   denotes direction,   denotes 

position,   is the RTE operator and    is the adjoint RTE operator. This means that the 

Monte Carlo Ray Tracing software developed in this Proyecto Fin de Carrera can, with 

small modifications, be employed to solve the adjoint thermal radiation problem. However, 

the development of such a solver is much beyond the scope of the project for several 

reasons. Moreover, computing the sensitivities via finite differences would also require an 

unaffordable CPU time, and we should then limit ourselves to explore the design space in a 

finite number of points (rather than finding the actual solution using descent methods), 

which leads to a discrete optimization problem. As solving binary or discrete optimization 
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problems is NP-hard
28

, we should cleverly define the design space to avoid introducing 

irrelevant or insensitive variables, which would excessively increase the required effort. 

6.3. Design Space 

The design space consists of the geometry of the receiver, the geometry of the window, the 

optical (radiative) properties of the walls and the direction of the fluid flow with respect to 

the concentrated solar irradiation. It is convenient to point out that we are optimizing the 

design of the receiver rather than the operating conditions (mass flow rate, inlet particle size, 

inlet mass loading, etc.) 

6.4. Constraints 

The constraints are based on material limits (for example, the maximum operating 

temperature of aluminum oxide is around 1560ºC), the space available on the top of the 

tower of the National Solar Thermal Test Facility where the solar receiver will be located, 

and other technical issues. The former constraints are imposed via a penalty method as they 

depend on the problem solution. 

6.5. Objective Function 

A wide variety of objective functions can be defined, such as: 

 Thermal efficiency on a particular day and time (e.g. 12:00 PM on March 21
st
, the Spring 

equinox): 
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 ∬           
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 (6-5) 

 Total useful energy throughout a particular day (e.g. March 21
st
): 

        ∫ (∬           
       

 ∬           
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 (6-6) 

 Total useful energy throughout the year: 

        ∫ (∬           
       

 ∬           
      

)  

        

       

 (6-7) 

                                                           
28

 NP-hard means that any algorithm developed for its numerical computation has a cost greater than any 

polynomial order, i.e., the time required to compute a solution grows faster than        , where   is the 

size of the problem (in our case, the dimension of the design space.) 
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 Cost of the generated electricity: For a more multidisciplinary approach the cost of the 

generated electricity can be minimized. For that, the cost of the components and their 

expected life span need to be known. 

Here we will employ the efficiency at 12:00 PM on an average day, namely on March 

21
st
 (the Spring equinox), as a preliminary objective function (    ) since the cost of the 

components and their expected lifespan cannot be accurately predicted yet. Objective 

functionals that consider the weighted-average efficiency at different times and days would 

be more accurate to elucidate the best design, but would yield a prohibitive CPU time. 

6.6. Optimization Technique 

The design space is explored via parametric study in order to identify important and 

sensitive variables, determine appropriate design variable ranges to meet the material limits, 

        , and obtain a first estimate of the optimum design and the maximum thermal 

efficiency that the 5 MWth Small Particle Solar Receiver can achieve. Hence, only one 

variable of the design space will be varied at the same time with respect to the so-called 

baseline case, and the objective function,  , will be evaluated in such designs. This way 

 |     
       will be explored, where    is the variable with respect to which the 

parametric study is conducted and   
  is the value of the design variable    in the baseline 

case. 

Design Parameter Value Design Parameter Value 

Receiver: 

- Shape 

- Length 

- Diameter 

- Tilt angle 

Window: 

- Material 

- Shape 

- Diameter 

- Thickness 

Outlet Tube: 

- Length 

- Diameter 

- Thickness 

 

Cylindrical 

3 m 

2 m 

26.5º 

 

Fused quartz (HOQ-310 [21]) 

Spherical cap (45º cap angle) 

1.7 m 

2.54 cm 

 

2.1 m 

0.6 m 

1 cm 

Direction of the flow 

Inlet Temperature 

Walls: 

- Radiative Properties 

- Thermal Resistance 

(including the insulation) 

Solar Irradiation: 

- Time 

- Day 

- Input power 

Operating Pressure 

Mass Loading of Particles 

Particle Diameter 

Countercurrent 

700 K 

 

Aluminum Oxide (Al2O3) 

2 m
2
-K/W 

 

 

12.00 PM 

March 21
st
 

4.25 MW 

5 bar 

0.5 g/m
3 

200 nm 

Table 12 – Design parameters and operating conditions of the baseline case of the design optimization. 

The design of the baseline case was chosen based on preliminary results (see Section 

7.1) and its design parameters are collected in Table 12. The operating conditions, which are 

not varied throughout the parametric study, are included for completeness as well. Note that 

the operating pressure has been changed from 10 bar (parametric study of the operation 

conditions, results in Section 7.1) to 5 bar (Multidisciplinary Design Optimization, results in 
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Section 7.2). In the former case, 10 bar was chosen for consistency with previous results 

[19,20]; while in the latter 5 bar is employed since this the pressure at which the 5 MWth 

Small Particle Solar Receiver (whose design is to be optimized) will operate. Moreover, the 

optical properties of the fused quartz in the visible spectrum have been updated due to the 

availability of new data. 

Note that parameter studies do not capture interaction between variables and the 

optimum design will not most likely be obtained. However, it is a cheap
29

 method to 

perform a preliminary design space exploration and determine important and sensitive 

variables, which is the main goal at this point of the project.  

A one-at-a-time optimization technique, however, is suggested for the final design 

optimization (to be performed once the oxidation code, currently being developed by Trent 

Martin, is available to be coupled to the model.) This optimization strategy captures some 

interaction between variables –even though the result may depend on the order of the 

factors– and has an expense           as well. Table 13 [77] aims to summarize the 

differences between a parameter study and a one-at-a-time technique, and presents a 

schematic representation of how they perform. Note that A
*
 is the value of A that optimizes 

the objective function (Experiments No. 1 and 2), and similarly with B
*
 (Experiments No. 1, 

3 and 4), C
*
 (1 and 5) and D

*
 (1, 6 and 7). The “best design” is then A

*
, B

*
, C

*
, D

*
. In the 

case of the design optimization of the Small Particle Solar Receiver, A, B, C and D represent 

the direction of the fluid flow with respect to the concentrated solar irradiation coming from 

the heliostat field, the radiative properties of the walls, the geometry of the window and the 

geometry of the receiver, respectively. 

 Parameter Study  One At a Time 

Expt. 

No. 

Variable  Variable 

A B C D  A B C D 

1 A1 B1 C1 D1  A1 B1 C1 D1 

2 A2 B1 C1 D1  A2 B1 C1 D1 

3 A1 B2 C1 D1  A
*
 B2 C1 D1 

4 A1 B3 C1 D1  A
*
 B3 C1 D1 

5 A1 B1 C2 D1  A
*
 B

*
 C2 D1 

6 A1 B1 C1 D2  A
*
 B

*
 C

*
 D2 

7 A1 B1 C1 D3  A
*
 B

*
 C

*
 D3 

Table 13 – Schematic representation of a parameter study and a one-at-a-time technique. 

 

 

 

                                                           
29

 The expense is          , where   is the number of levels and   the number of factors (or variables) of 

the parametric study. 
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Chapter 7 

Numerical Results 

This chapter summarizes the results obtained in this Proyecto Fin de Carrera using the 

methodology presented in previous chapters. It is split up into two sections: The first part 

corresponds to the parameter study of the operating conditions (time of the day and mass 

flow rate), whereas the second section presents the multidisciplinary design optimization of 

the 5 MWth Small Particle Solar Receiver. 

7.1. Parametric Study of the Operating Conditions 

This sections collects the results of the parameter study of the operating conditions (time of 

the day and mass flow rate) using the most efficient design found in the preliminary design 

optimization process (illustrated in Figure 2 and whose design parameters are collected in 

Table 14.) In Figure 2, the mixture of air and carbon nanoparticles enters the rear of the 

receiver (blue arrows), travels towards the front absorbing concentrated solar irradiation 

(which penetrates through the ellipsoidal window displayed in gleaming light gray, as 

illustrated with yellow arrows), and finally exits the receiver going backwards through the 

central outlet tube (red arrows). 

Design Parameter Value Design Parameter Value 

Receiver: 

- Shape 

- Length 

- Diameter 

- Tilt angle 

Window: 

- Material 

- Shape 

- Principal axes 

- Thickness 

Outlet Tube: 

- Length 

- Inner diameter 

- Thickness 

 

Cylindrical 

3 m 

3 m 

23.8º 

 

Generic fused quartz [89] 

Oblate spheroid (ellipsoid) 

1.7 m x 1.7 m x 1.21 m 

2.54 cm 

 

1.9 m 

0.6 m 

1 cm 

Walls: 

- Thermophysical Properties 

- Radiative Properties 

- Thermal Resistance 

(including the insulation) 

Operating Conditions: 

- Inlet Temperature 

- Operating Pressure 

- Inlet particle mass loading 

- Inlet particle diameter 

 

Aluminum Oxide (Al2O3) 

Blackbody 

2 m
2
-K/W 

 

 

700 K 

10 bar 

0.5 g/m
3 

200 nm 

Table 14 – Preliminary design parameters and operating conditions of the Small Particle Solar Receiver. 

The size of the window has been chosen to optimize the transmitted solar irradiation 

without excessively increasing the radiative losses coming from the inside of the receiver; 

while the length of the outlet tube provides enough path length to absorb solar irradiation 

and allows an easy flow recirculation. Note also that gravity forces are not included in the 

model and buoyancy forces are thereby neglected. Since a strong thermal stratification is 
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expected inside the solar receiver, it constitutes a complicated problem itself that should be 

first addressed separately. Particle oxidation is not yet included, as the oxidation code is 

currently being developed by Trent Martin, a graduate student in our group. 

For this preliminary design of the Small Particle Solar Receiver, three solar irradiation 

conditions have been simulated to predict the receiver’s behavior at different times: 12:00 

PM, 2:00 PM and 4:00 PM on March 21
st
 –the Spring equinox–. The location employed for 

the CSP plant is the National Solar Thermal Test Facility (Albuquerque, NM), where the 

Small Particle Solar Receiver will be tested. The spectral intensity field on the window for 

these three times was generated by proper ray tracing software. The incoming rays from the 

heliostat field (transmitted, absorbed and reflected rays) are generated by our coupled 

MIRVAL and window model, developed by Sandia National Laboratories [78] and Mecit 

[21] respectively. In particular, 100 million rays are traced in MIRVAL, which leads to 

about 13 million ray entering into the receiver and 1.4 million rays being absorbed by the 

window. Then, the Monte Carlo software reads the location, direction, wavelength and 

energy of all these rays and traces them throughout the receiver. Therefore, the spatial, 

directional and wavelength dependence of the concentrated solar irradiation is considered 

and modeled by our software.  

For each solar thermal input, the mass flow rate has been varied to accommodate the 

irradiation differences and thus optimize the efficiency. Table 15 collects a summary of the 

fifteen simulations performed for different cross combinations of time of the day and mass 

flow rate. 

 12:00 PM 2:00 PM 4:00 PM 

1 kg/s - - Sim. 3-1 

1.5 kg/s - - Sim. 3-2 

2 kg/s Sim. 1-1 Sim. 2-1 Sim. 3-3 

2.5 kg/s - - Sim. 3-4 

3 kg/s Sim. 1-2 Sim. 2-2 Sim. 3-5 

4 kg/s Sim. 1-3 Sim. 2-3 - 

5 kg/s Sim. 1-4 Sim. 2-4 - 

6 kg/s Sim. 1-5 Sim. 2-5 - 

Input Power 3.93 MW 3.48 MW 1.75 MW 

Table 15 – Summary of simulations performed (March 21
st
 in Albuquerque, NM). 

Figures 21 and 22 show the outlet temperature and the thermal efficiency of the Small 

Particle Solar Receiver, respectively, for the fifteen simulations presented in Table 15. The 

thermal efficiency is defined as the useful power over the solar thermal power that goes 

through the window and enters the receiver. Hence, the losses due to absorption and 

reflection in the window are not included in the definition of thermal efficiency, but rather 

they are accounted for by the so-called optical efficiency of the receiver. In the set of 

simulations presented in this parametric study (Section 7.1) the transmissivity of the window 

(i.e. the optical efficiency) is 85.2%, 88.3% and 88.3% at 12:00 PM, 2:00 PM and 4:00 PM, 
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respectively. However, the actual optical efficiency of the receiver will actually be higher 

since the optical properties of the fused quartz employed in this section [89] lead to an 

unrealistically high absorptivity (for example, with the updated properties [21] used in the 

simulations of Section 7.2 the optical efficiency at 12:00 PM is 93.1%, see Table 20.) Note 

also that the useful power is simply proportional to the thermal efficiency for a particular 

time of the day. As expected, the outlet temperature is a monotonic decreasing function of 

the mass flow rate; which implies that the smaller the mass flow rate is, the greater the 

thermodynamic efficiency of the power block could be. However, since thermal losses 

increase with temperature, the thermal efficiency of the solar receiver shows the opposite 

trend. 

 

Figure 21 – Outlet temperature of the Small Particle Solar Receiver for different times and mass flow rates. 

 

Figure 22 – Thermal efficiency of the Small Particle Solar Receiver for different times and mass flow rates. 
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Figure 23 – Overall efficiency of the Small Particle Solar Receiver driving a gas turbine for different times and 

mass flow rates (Carnot efficiency is employed for the power block.) Only the optimum mass flow rate is 

desired to be pointed out. 

Therefore, an intermediate mass flow rate that maximizes the overall efficiency must 

exist and should be determined. For that, the thermodynamic efficiency of the power block 

as a function of the useful thermal power, pressure ratio, isentropic efficiency of compressor 

and turbine, recuperator effectiveness and pressure drops needs to be known. As a first 

approximation and with the only purpose of estimating the optimum mass flow rate (rather 

than predicting the overall efficiency), the Carnot efficiency can be employed for the power 

block. Under such assumption, the overall efficiency of the system is shown in Figure 23 

and the (discrete) optimum mass flow rates are 4 kg/s at 12:00 PM, 4 kg/s at 2:00 PM and 

2.5 kg/s at 4:00 PM. 

It is noteworthy that, utilizing the overall optimum mass flow rate defined above, the 

outlet temperature can be kept over 1250 K from 7:30 AM to 4:00 PM
30

 on an average day, 

namely March 21
st
. This outlet temperature is right on target for driving a Brayton cycle 

[60], which is the ultimate goal of the Small Particle Solar Receiver. Furthermore, it is 

possible to achieve these temperatures with thermal efficiencies over 89% at all times. 

The temperature field in horizontal and vertical sections for the optimum mass flow rate 

at 12:00 PM (4 kg/s) is shown in Figure 24. The hot spot next to the window is caused by 

the lack of an oxidation model and is more spread out in the horizontal than in the vertical 

direction. This is mainly due to the fact that the heliostat field of the National Solar Thermal 

Test Facility (Albuquerque, NM) spans 90º laterally and only 29º vertically when viewed 

from the top of the tower. Note also that the temperature field is slightly higher in the top 

                                                           
30

 The maximum concentrated solar irradiation that reaches the window occurs approximately at 12:00 PM, 

and 7:30 AM is the equivalent time in the morning to 4:00 PM [21] (Albuquerque, NM, on March 21
st
.) 
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half of the solar receiver –especially near the window– which indicates that the tilt angle 

should be increased. Actually, the optimum tilt angle has been recently found to be 26.5º 

[22], while 23.8º is used here due to the lack of knowledge about the optimum angle when 

the simulations were run. Finally, the length to obtain good mixing in the outlet tube will be 

considerably reduced when particle oxidation is included in the model since the high 

temperature zone near the window wouldn’t exist and a much more homogeneous 

temperature profile at the beginning of the outlet tube would be obtained. 

 

Figure 24 – Temperature field (K) in horizontal and vertical sections at 12:00 PM with a mass flow rate of 4 

kg/s. 

The temperature field at 4:00 PM is clearly asymmetric with respect to the vertical 

plane (see Figure 25) since the receiver is fixed on the top of the tower and does not have 

solar tracking. Nevertheless, the maximum wall temperature is lower than at 12:00 PM (to 

be discussed below) due to the also lower solar irradiation at that time. 

As for the flow field inside the solar receiver, it should be noted that, even in this 

preliminary design, the air-particle mixture has a smooth recirculation prior to entering the 

outlet tube. Moreover, the pressure drop is in the asymptotic behavior zone and is limited to 

90 Pa even in the most unfavorable (optimum) situation (4 kg/s at 12:00 PM). This value is 

well below current tubular solar receivers and additionally does not diminish the 

thermodynamic efficiency due to pressure drop between the compressor and the turbine (the 

expansion ratio through the turbine is essentially the same.) 
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Figure 25 – Horizontal section of the temperature field (K) at 4:00 PM with a mass flow rate of 2.5 kg/s 

(bottom view of the receiver. Recall it is a southward heliostat field in the Northern Hemisphere.) 

The maximum wall temperature is reached at the beginning of the outlet tube and on the 

exterior cylindrical wall at a distance between 0.3 m (4:00 PM) and 0.7 m (12:00 PM) from 

the window side.  In particular, the maximum wall temperature is reached at 12:00 PM and 

is around 1400 K when the optimum mass flow rate (4 kg/s) is employed. However, the 

walls are treated as blackbodies here, which is unrealistic and represents the worst case 

scenario. In the actual receiver, aluminum oxide walls will be most likely employed (see 

Section 7.2.2) and, on account of their selective behavior, its temperature will be much 

below the blackbody case. Actually, one additional simulation was performed at 12:00 PM 

with Al2O3 radiative properties on the walls and 4 kg/s to determine the wall temperature 

distribution in such more realistic situation (all other parameters are kept constant, see Table 

14). The maximum temperature found was 1175 K on the exterior wall and 1350 K on the 

outlet tube; albeit the latter can be reduced just by distancing the outlet tube from the 

window. A further discussion of the radiative properties of the walls as a design variable will 

be presented in Section 7.2.2. Furthermore, convergent geometries (from the fluid flow point 

of view) will reduce the wall temperature and will be explored in the multidisciplinary 

design optimization of Section 7.2. These convergent geometries will also contribute to 

increase the thermal efficiency and improve the fluid flow inside the solar receiver. 

Another extra simulation was performed at 12:00 PM with 4 kg/s and 5 bar inside the 

solar receiver. All other parameters than pressure were kept constant with respect to Table 

14 in an effort to assess the effect of the operating pressure. It was found that both the 

thermal efficiency and the temperature field are approximately constant regardless the 



Pablo Fernández del Campo  Universidad de Valladolid 

107 

 

pressure. However, the pressure drop doubled from 10 bar (91.8 Pa) to 5 bar (184.1 Pa) as 

the air flows twice faster. Note that the pressure was varied from 10 bar in this parametric 

study (Section 7.1) to 5 bar in the design optimization process (Section 7.2), which justifies 

the analysis presented in this paragraph. 

It is of great interest to analyze the origin of the losses in order to optimize the design 

and increase the thermal efficiency of the Small Particle Solar Receiver. Table 16 collects 

the contribution of the main losses mechanisms at 12:00 PM with a mass flow rate of 4 kg/s 

(note that the input power is 3.93 MW in such conditions). Several conclusions can be 

drawn from these results. First, radiative losses clearly dominate over convective losses. 

Second, emission from the window is the main mechanism of losses when it is at 1000 K 

(such temperature was imposed via boundary condition). However, the temperature of the 

window will actually be lower [65] (especially on the outer surface) and the losses have 

been overestimated. At any rate, this shows the importance of keeping the window as cool as 

possible for additional reasons aside from lessening the thermal stresses. Moreover, anti-

reflective coatings could be used if the temperature of the window was low enough, with the 

corresponding reduction of optical losses.  

Note finally that the results presented above correspond with the preliminary design of 

the Small Particle Solar Receiver shown in Figure 2 and whose design parameters are 

summarized in Table 14. However, an optimized design (spherical cap window, new 

receiver geometries, selective wall surfaces, etc.) will increase the thermal efficiency. For 

example, losses (4) and (5) could be reduced through a no-particles zone near the window; 

while losses (6) would be considerably diminished with an optimized geometry. The design 

optimization of the Small Particle Solar Receiver is the subject of the next section. 

Mechanism of Losses Energy (kW) 

Convection: 

1. From the window 

2. From the walls 

Radiation: 

3. Emitted from the window (mostly from the exterior surface) 

4. Emitted from the air-particle mixture 

5. Back-scattered solar irradiation 

6. Emitted from the inner part of the exterior wall (see Figure 2) 

7. Emitted from the left wall (as displayed in Figure 2) 

8. Emitted from the outlet tube 

 

32.1 

8.9 

 

139.6 

122.8 

73.3 

71.9 

21.1 

7.6 

Table 16 – Contribution of the different losses mechanisms at 12:00 PM and with a mass flow rate of 4 kg/s. 
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7.2. Design Optimization 

7.2.1. Direction of the Flow 

The ideal direction of the fluid flow with respect to the solar irradiation (cocurrent vs. 

countercurrent) was analyzed. Previous work conducted by Ruther [19] showed that the 

countercurrent direction of flow has slightly better efficiency than the cocurrent, at least for 

a particle diameter of 200 nm. However, two main factors limited the validity of this result: 

1. Lack of an oxidation model. 

2. The design of the receiver and the operating conditions were quite different to the ones 

currently considered. 

To elucidate this question three different oxidation models were implemented (for the 

sake of robustness) in the 2-D model previously developed by Ruther [19]. While simple, 

this model can serve as a first approximation to the best flow direction. Therefore, in this 

section (and only in this section) we will not employ the three-dimensional model presented 

in this Proyecto Fin de Carrera since the best flow direction is very sensitive to particle 

oxidation and this effect, although currently under research, has not been included yet in the 

three-dimensional model. The solution procedure of this two-dimensional model was under-

relaxed (temperature and source term fields) respect to the original model by Ruther to 

prevent numerical oscillation due to oxidation effects. Several other parts of the code were 

modified as well (pure programming issues) to accommodate different particle sizes and 

mass loadings throughout the receiver. 

In particular, the three kinetic models employed are: 

 Kinetic Theory model: 

 ̇   
       

√ 
  

 
   (7-1) 

Where  ̇   is the rate of carbon oxidation per unit time and unit particle surface area, 

    is the Arrhenius coefficient,   is the activation energy and   is the universal gas 

constant. Lee and coworkers [79] used such a model to determine soot oxidation rates in 

flames, and provided                             ⁄  and               ⁄  for 

carbon soot. 

 Nagle and Strickland-Constable model: 

 ̇  

   
 (

     

       

)       
        [

  

    
] (7-2) 

With: 



Pablo Fernández del Campo  Universidad de Valladolid 

109 

 

  [    (     
)⁄ ]
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  ⁄  

While the constants were determined from measurements on bulk pyrolytic graphite 

[80], they can also be used to predict oxidation rates for soot quite well [81]. 

 Bechtel model [82]: 

 ̇           
  

  
  (7-4) 

Where                     ⁄  and            , albeit the exact values 

actually depend on the particular type of carbon. 

A further discussion on these three oxidation models can be found in [83]. Once the 

oxidation kinetics are known, the mass loading   can be calculated by integration of Eq. 7-5 

along the streamlines: 

     ∫  ̇           

 

  

 (7-5) 

Note that it is necessary to know        along the streamlines to calculate the mass 

loading:        is known from the Monte Carlo solution and        can be readily 

obtained since a simple slug flow travels across the receiver in this 2-D model. Although   

is constant over each cell, the effective surface available for oxidation diminishes due to 

oxidation and the integrand in Eq. 7-5 varies even across isothermal cells. Therefore, a 

numerical quadrature technique is used to improve the accuracy of the solution. 

Operating Conditions Value Design Parameter Value 

Solar Input: 

- Power 

- Spatial distribution over the 

window 

- Directional distribution 

Mass Flow Rate 

Operating Pressure 

Air-Particle Mixture Inlet Conditions: 

- Mass Loading 

- Particle Diameter 

- Temperature 

 

4.2 MW 

Uniform 

 

45º Cone Angle 

4 kg/s 

5 bar 

 

0.5 g/s 

200 nm 

700 K 

Receiver: 

- Shape 

- Length 

- Diameter 

Window: 

- Optical Properties 

- Shape 

- Diameter 

Walls: 

- Radiative 

Properties 

 

Cylindrical 

3 m 

2 m 

 

Transparent 

Flat 

1.6 m 

 

Aluminum Oxide 

(Al2O3) 

Table 17 – Design parameters and operating conditions of the receiver (study to elucidate the best fluid flow 

direction with respect to the concentrated solar irradiation.) 
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The case of no oxidation, which physically corresponds to a receiver operated with a 

nitrogen-particle mixture, was simulated as well. The design parameters and operating 

conditions of the receiver employed, which were chosen to reproduce the actual design as 

close as the model allows, are summarized in Table 17. 

Table 18 collects the average outlet temperature and the average outlet mass loading 

obtained for the eight simulations performed. For further details, Figure 26 shows the 

average temperature as a function of the axial position for the cocurrent (circles) and 

countercurrent (squares) flow directions employing the three oxidation models previously 

mentioned. The results without oxidation model are shown as well. The average mass 

loading as a function of the axial position is plotted in Figure 27. 

  Temperature (K) Mass Loading (g/m
3
) 

No Oxidation 

- Cocurrent 

- Countercurrent 

 

1481.12 

1408.30 

 

0.5 

0.5 

Nagle Model 

- Cocurrent 

- Countercurrent 

 

1309.19 

1293.86 

 

8.13·10
-3

 

4.44·10
-3

 

Kinetic Theory Model 

- Cocurrent 

- Countercurrent 

 

1241.93 

1173.33 

 

0.00 

1.47·10
-3

 

Bechtel Model 

- Cocurrent 

- Countercurrent 

 

1224.17 

1122.76 

 

0.00 

8.29·10
-4

 

Table 18 – Average temperature and mass loading on the outlet surface (study to elucidate the best fluid flow 

direction with respect to the concentrated solar irradiation.) 

The Nagle and Strickland-Constable model predicts the slower oxidation rate, followed 

by the Kinetic Theory and the Bechtel model respectively, which is consistent with [83]. 

Two main conclusions can be inferred from these results: 

1. The cocurrent direction of the flow provides higher thermal efficiency than the 

countercurrent one for the three oxidation models implemented. The same result was 

observed with no oxidation, which indicates that the geometry of the solar receiver (the 

only variable modified in this case with respect to [19]) has an influence in the best 

direction of the flow. Hence, the Small Particle Solar Receiver would show better 

performance with the cocurrent flow direction regardless of whether it is operated by air 

(oxidation) or nitrogen (no oxidation), at least for the baseline design employed here. 

2. The kinetic theory and the Bechtel model predict lower outlet mass loading with the 

cocurrent flow direction than with the countercurrent one, while the Nagel model shows 

the opposite trend. Anyway, the particles are essentially oxidized prior to exiting the 
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solar receiver for either flow direction
31

. This implies that the outlet air is fully ready to 

drive a gas turbine (high temperature, no particles). 

Note that the greater efficiency of the cocurrent flow direction is expected when particle 

oxidation is included in the model since: (1) The outlet temperature (and thereby the thermal 

efficiency) is essentially limited by the temperature at which the particles fully oxidize
32

; (2) 

the more abrupt the temperature increases, the higher the temperature the carbon particles 

reach before completely oxidizing (see Proof 1); and (3) the rate of heating is higher with the 

cocurrent flow direction (see Figure 28) as the particles experience the highest irradiation 

level when entering the receiver. 

 

Figure 26 – Average temperature as a function of the axial position for the cocurrent (top) and countercurrent 

(bottom) flow directions. 

                                                           
31

 First, the coarse Monte Carlo mesh (especially important in the radial direction) and the simple slug flow 

assumed diminish the oxidation rate. Second, the oxidation models fail with very small particles, when the 

exponential behavior is no longer valid. Third, even if the models were right, the particles on the outlet would 

be of 32 nm at 1170 K in the worst case (kinetic theory, countercurrent) and would oxidize completely prior to 

entering the turbine of the engine.  
32

 Volumetric absorption is the main mechanism to absorb solar irradiation. 
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 Figure 27 – Average mass loading as a function of the axial position for the cocurrent (top) and countercurrent 

(bottom) flow directions. 

Proof 1 

We will compute the sign of       ⁄  for the heating rate        , where     is the temperature at 

which the particles oxidize, which is supposed to happen when the mass of the carbon particles   is smaller 

than a critical mass    : 

       ∫  ̇           
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 and  ̇ are the radius, the surface area and the oxidation 

rate per surface area of the carbon particles, respectively. Employing the Leibniz integral rule: 
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Since    ̇             and 
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  , we can 

conclude that 
    

  
  . Therefore, the higher the heating rate is, the higher the temperature the carbon particles 

reach before oxidizing completely. 

While this proof was given for a constant heating rate,     ⁄   , it can be readily extended to non-

constant heating rates since they are actually an infinite succession of constant heating rates of infinitesimal 

duration and with different values of  . 
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Figure 28 – Temperature field for cocurrent (left column) and countercurrent (right column) flow directions. 

Each row corresponds to a different oxidation model: (1) No oxidation, (2) Nagel model, (3) Kinetic Theory 

model, and (4) Bechtel model. The solar irradiation travels always from left to right. Note that the color scale is 

the same for each oxidation model but can vary between them. 

It should also be noted that the lack of a window in the radiative heat transfer 

calculation in this two-dimensional model (modeled as a simple transparent aperture) 

penalizes the designs whose fraction of losses due to emission from inside of the receiver 

(long wavelength   small transmissivity) is large compared to the losses due to backward 

scattering of solar irradiation (short wavelength   large transmissivity). This ratio will be 

probably higher for the countercurrent flow direction and the simulation results could be 



Pablo Fernández del Campo  Universidad de Valladolid 

114 

 

biased in favor of the cocurrent direction. In addition, one cannot neglect the fact that it is 

much more difficult to inject the air-particle mixture and obtain a homogeneous fluid flow 

when the inlet is located in the window side. Nonetheless, these results are only valid for an 

inlet particle size of 200 nm. For a robust decision, a wider variety of particles sizes should 

be simulated (larger inlet particles are expected to benefit the cocurrent flow direction; while 

smaller particles should help the countercurrent one [19]).  

Finally, Figure 28 shows the temperature field for both cocurrent and countercurrent 

flow directions with (1) no oxidation, (2) the Nagel model, (3) the Kinetic Theory model, 

and (4) the Bechtel model. 

Despite the previous results, the countercurrent flow direction was chosen for the 

baseline case of the design space exploration for two main reasons: 

1. Consistency with previous results [19,20]. 

2. The difficulty of injecting the air-particle mixture and obtain a homogeneous fluid flow 

when the inlet is located on the window side, which may compromise the superiority of 

the cocurrent flow direction. 

Nevertheless, further analysis of the cocurrent direction of the flow and how to inject 

the air-particle mixture in such a case is a pending task to be addressed in the future. 

7.2.2. Radiative Properties of the Walls 

The infinite degrees of freedom necessary to describe the spectral dependence of the 

radiative properties of the walls can be essentially reduced to four types of properties, 

denoted by S1, S2, S3 and S4: 

- S1: High absorptivity in the solar spectrum and low emissivity at longer, infrared 

wavelengths (e.g. selective coatings of solar collectors.) 

- S2: High absorptivity and emissivity in the whole spectrum (blackbody). 

- S3: Low absorptivity in the solar spectrum and high emissivity at infrared wavelengths 

(e.g. Al2O3). 

- S4: Low absorptivity and emissivity in the whole spectrum (reflective walls). 

A schematic representation of the spectral absorptivity of these four types of radiative 

properties is shown in Figure 29. The directional behavior is assumed diffuse in all cases. 

Table 19 shows a summary of the simulation results with the radiative properties S2, S3 

and S4. The surface S1 is not simulated as it would lead to (unacceptable) wall temperatures 

over the blackbody case (S2). From Table 19 we can infer that the radiative properties S3 

(Al2O3) show the best compromise between thermal efficiency and wall temperature. Note 



Pablo Fernández del Campo  Universidad de Valladolid 

115 

 

that the high temperature of the exterior wall is due to the reduced diameter and simple, 

right-cylindrical geometry of the receiver utilized in the baseline design. Optimized 

geometries will dramatically reduce the wall temperature and increase the thermal efficiency 

of the receiver, as will be discussed later. Finally, as expected, pressure drop is essentially 

insensitive to the radiative properties of the walls. 

 

Figure 29 – Schematic representation of the spectral absorptivity of the four types of surface radiative 

properties considered. Note that, under local thermodynamic equilibrium, the spectral emissivity equals the 

spectral absorptivity in diffuse surfaces. 

 S2 S3 S4 

Radiative properties employed to 

simulate this case 
     Al2O3 

(see Figure 12) 
       

Thermal efficiency 77.46% 79.63% 80.46% 

Outlet temperature 1414.5 K 1433.3 K 1440.4 K 

Maximum temperature: 

- Exterior wall 

- Outlet tube 

 

  1725 K 

  1600 K 

 

  1600 K 

  1450 K 

 

  1750 K 

  1500 K 

Pressure drop 163.6 Pa 165.0 Pa 165.5 Pa 

Table 19 – Summary of simulation results with the different types of surface radiative properties considered. 

7.2.3. Window Geometry 

A curved window is required to withstand the mechanical loading due to the pressurized 

environment inside the receiver (around 5 bar in the 5 MWth Small Particle Solar Receiver 

considered here and greater when eventually introducing the receiver in the high-pressure 

side of a gas turbine engine.) The material selected for the window is fused quartz (or fused 

silica) due to its selective optical behavior (high transmissivity in the solar spectrum and low 
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transmissivity at infrared wavelengths) and very high compressive strength (around 1100 

MPa). Hence, a fused quartz window will perform well as long as only small tensile stresses 

are allowed to develop (thereby the curved geometry.) Moreover, its extremely low 

coefficient of thermal expansion accounts for its remarkable ability to undergo large, rapid 

temperature changes (e.g. during cloudy transient periods
33

) without cracking. 

Regarding its shape, spherical-cap and ellipsoidal windows are considered and 

compared (the latter is simply a prolate spheroid with ratio between principal axes   √ .) 

As for mechanical considerations, the ellipsoidal geometry would eliminate tensile stresses 

and the window would be entirely in compression. Moreover, it may be preferable from a 

seal design perspective. However, spherical windows are much easier to fabricate and polish 

than ellipsoidal shapes as they are a portion of a sphere. With a spherical cap window, the 

amount of required material to avoid buckling of the window is minimized for a 60º cap 

angle [88]. Nevertheless, tensile stresses are not minimized for this shape and near the 

sealing edge the glass is under tension. It may be possible to reduce these stresses by a 

proper seal design that flexes in response to the window being under internal pressure. 

Previous studies conducted by Mecit [21] showed that the optical efficiency of 

spherical-cap windows has a global minimum at 45º cap angle and then increases in both 

directions (towards 0º and towards 90º). The optical efficiency of the ellipsoidal window 

equals the one of a 70º cap angle window. However, these results only account for the 

transmittance of concentrated solar irradiation from the heliostat field to the inside of the 

receiver; while the transmission of radiation from the inside to the outside of the receiver 

constitutes the main loss mechanism (see Section 7.1) and needs to be considered as well. 

Thus, the optimum window geometry would be a compromise between both effects; not to 

mention that the efficiency is only one of the many aspects to be considered in this 

multidisciplinary decision-making process. 

As stated previously, the ellipsoidal window (  √ ) and the 45º spherical-cap 

window have been compared in the design space exploration presented in this Proyecto Fin 

de Carrera. A summary of the simulation results with both window geometries is shown in 

Table 20. The optical efficiency is, as expected [21], greater with the ellipsoidal window, but 

the overall efficiency is higher with the 45º spherical-cap geometry. This result is mainly 

because the ellipsoidal window penetrates deeper into the solar receiver than the 45º 

spherical-cap window and the radiative losses are thereby higher. The maximum wall 

temperature and outlet tube temperature are insensitive to the window geometry (note, again, 

that such high temperatures are due to the reduced diameter and simple, right-cylindrical 

geometry of the receiver employed in the baseline design case.) Finally, the pressure drop is 

                                                           
33

 Note, however, that the heliostat field would be gradually covered by a transient cloud and the temperature 

gradient with respect to time would be considerably reduced. 
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kept constant as the position of the outlet tube was chosen in both cases to maintain a 

distance to the window of 0.5 m. 

 45º Spherical-Cap Window Ellipsoidal Window 

Efficiency of the receiver: 

- Optical 

- Thermal 

- Total 

 

92.14% 

79.63% 

73.37% 

 

93.08% 

76.03% 

70.77% 

Maximum temperature: 

- Exterior wall 

- Outlet tube 

 

  1600 K 

  1450 K 

 

  1600 K 

  1450 K 

Radiation absorbed in the window: 

- From the heliostat field 

- From the solar receiver  

273.1 kW 

33.0 kW 

240.1 kW 

294.7 kW 

33.2 kW 

261.5 kW 

Pressure drop 165.0 Pa 165.6 Pa 

Table 20 – Summary of simulation results with the ellipsoidal window and with the 45º spherical-cap window. 

From Table 20, the total radiation absorbed by the ellipsoidal window is 8% greater 

than with the 45º spherical-cap window. However, the absorption per unit area is smaller 

with the ellipsoidal window (see Figure 30) due to its higher surface. Note, finally, that the 

optimum window geometry should be a compromise between efficiency, mechanical 

behavior, manufacturing issues and economic aspects. Hence, the 45º spherical-cap window 

is preferred over the ellipsoidal window as it provides higher efficiency, is more inexpensive 

and easier to manufacture. 

 
Figure 30 – Radiation absorbed by the 45º spherical-cap window and by the ellipsoidal window as a function 

of the radial position (the azimuthal dependence is averaged). 
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Figure 31 – Solar irradiation on the exterior wall as a function of the axial position for a non-participating 

media (air, top figure) and a participating media (bottom, air-particle mixture with            and   

      .) Note the different scale of solar irradiation between both figures. 

7.2.4. Receiver Geometry 

To simplify the analysis, only the angle between the front wall and the initial part of the 

exterior wall –or, equivalently, between the rear wall and the end of the exterior wall– is 

varied (see Figure 32 for greater clarity.) The length and the front diameter of the receiver 

are kept constant (3 m and 2 m, respectively) in all the designs. This way, the continuous 

function to describe the generatrix of the solar receiver (infinite degrees of freedom) is 

reduced to only one variable (one degree of freedom). Thus, the two geometries illustrated in 

Figure 32 were simulated, which correspond with the cases of 0º and 45º. The choice of 

these designs is based on preliminary studies of the distribution of solar irradiation on the 

walls for different receiver geometries. In particular, the five geometries described below, 

whose results are collected in Figure 31, were analyzed: 
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- Geometry #1: Same geometry as Design 1 (see Figure 32). 

- Geometry #2: Same geometry as Geometry #3 but without the rear “chamfer” (the 

front “chamfer” still exists.) 

- Geometry #3: Same geometry as Design 2 but with an angle of 26.6º (instead of 45º) 

between the front wall and the initial part of the exterior wall, as well as between the 

rear wall and the end of the exterior wall. 

- Geometry #4: Same geometry as Geometry #5 but without the rear “chamfer” (the 

front “chamfer” still exists.) 

- Geometry #5: Same geometry as Design 2 (see Figure 32). 

The front diameter of the receiver is 2 m in the five geometries analyzed, i.e. regardless 

the existence of the “chamfers” and their angles. 

 
Figure 32 – Temperature field (K) in longitudinal section on the left and vertical section on the right of the 

solar receiver. The first row corresponds with the Design 1 (0º) and the second row with the Design 2 (45º). 

The color scale varies between both designs. Note also that both designs are not to the same scale for an easier 

visualization of the temperature field. In reality, both designs are the same length (3 m). 

The main simulation outputs for the two geometries analyzed are collected in Table 21, 

while Figure 32 shows the temperature field inside the receiver. The so-called Design 2 

(45º) maximizes the thermal efficiency and minimizes the temperature of the exterior wall, 

which is now acceptable unlike in previous sections (recall it was because Design 1 was 

chosen for the baseline case.) Note also that the outlet tube temperature can be easily 
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reduced just by distancing it from the window; although this would also affect the thermal 

efficiency and the window temperature. 

The extremely high temperature in some regions of the receiver (see Figure 32) is due to 

the lack of particle oxidation in the current model. In reality, these high temperature zones 

cannot exist as particles would immediately oxidize and no absorption would occur. This, in 

turn, would increase the thermal efficiency of the receiver since the radiative losses due to 

emission from the air-particle mixture (the main losses mechanism in all the designs 

analyzed in the design optimization) would dramatically diminish. Actually, the outlet 

temperature of the Small Particle Solar Receiver will most likely be limited by the 

temperature at which the particles fully oxidize; although the efficiency can be raised by 

increasing the mass flow rate even if premature oxidation occurs. Note, however, that this 

strategy would reduce the solar share since the natural gas consumption would increase due 

to both higher carbon particle requirements (to maintain the mass loading and thus the 

optical thickness) and a higher fuel demand in the combustor to achieve the turbine inlet 

temperature desired. 

 Design 1 (0º) Design 2 (45º) 

Thermal efficiency 79.63% 85.47% 

Outlet temperature 1433.3 K 1485.8 K 

Maximum temperature: 

- Exterior wall 

- Outlet tube 

 

  1600 K 

  1450 K 

 

  1325 K 

  1500 K 

Pressure drop 165.0 Pa 173.3 Pa 

Table 21 – Summary of simulation results with the two geometries of the solar receiver considered. 

Therefore, the 45º geometry (Design 2) is suggested for the 5 MWth Small Particle Solar 

Receiver to be designed and tested under the U.S. DOE’s SunShot Initiative. Note, however, 

that this geometry has greater cross sectional area than Design 1, which would increase the 

residence time of the particles inside the receiver and could lead to premature oxidation and 

then limit the outlet temperature that can be reached. It is also advisable to locate the air-

particle inlets in different axial positions of the exterior surface for several reasons. First, the 

operational flexibility (important for experimental plants) would increase since different 

flow patterns and strategies could be analyzed. This, in turn, would improve the robustness 

of the design with respect to the oxidation kinetics. And second, these inlets would avoid no-

particle zones near the walls
34

, which is necessary to keep the wall temperature below 

material limits. A disadvantage of this multiple-inlet design is that the small holes required 

would increase the pressure drop through the receiver. Hence, they should be designed to 

                                                           
34

 If no action was taken in Design 2, a no-particle zone would appear near the exterior wall due to particle 

oxidation and the lack of convective transport to replace the oxidized particles. 
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ensure that the pressure drop remains low and the thermodynamic efficiency of the power 

block is not significantly reduced. 
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Chapter 8 

Conclusions 

A three-dimensional, coupled software to numerically simulate the fluid flow and 

radiative heat transfer in a Small Particle Solar Receiver has been successfully developed, 

programmed and validated. This solar receiver, developed under the support of the U.S. 

DOE’s SunShot Initiative, aims to volumetrically absorb concentrated solar irradiation using 

an air-particle mixture to drive a gas turbine in Solar Tower Power plants at much higher 

temperatures than the state-of-the-art molten salt solar receivers. The steady-state Reynolds-

Averaged Navier Stokes equations, together with the two equations of the SST κ-ω 

turbulence model and the corresponding constitutive relations, are solved numerically by the 

CFD package ANSYS Fluent. An in-house Monte Carlo Ray Trace (MCRT) method is 

employed for the radiative heat transfer due to the highly directional intensity distribution 

from the heliostat field and the strong spectral dependence of the radiative properties of the 

particles, which cannot be properly solved by conventional numerical methods such as the 

Spherical Harmonics or the Discrete Ordinates method.  

The CFD solver and the MCRT code have been coupled together via User-Defined 

Functions (UDFs) and iterate alternatively until convergence. The (adaptive) solution 

procedure was optimized to prevent numerical oscillations and reduce the CPU time by 

approximately two orders of magnitude compared to the non-optimized version of the code. 

For that, an efficient programming of the Monte Carlo code, the application of variance 

reduction techniques (mainly stratified sampling) and the availability of two different 

MCRT methods (collision-based and pathlength-based) were of great help. The Monte Carlo 

method is also coupled with a heliostat field model and allows for real solar irradiation, i.e. 

the spatial, directional and wavelength dependence of the concentrated solar irradiation is 

properly modeled. Moreover, this software can simulate any axisymmetric geometry for the 

solar receiver, as well as flat, ellipsoidal and spherical cap windows, the latter necessary to 

withstand the pressurized environment inside the receiver. Both the UDFs and the MCRT 

method were written specifically for this Proyecto Final de Carrera and consist of over 

12,500 lines of code. Furthermore, they can be used interchangeably for either the two-

dimensional (axisymmetric) or the three-dimensional version of the CFD solver. 

This software was first utilized to perform a parametric study of the operating 

conditions (time of the day and mass flow rate) using a preliminary design of the solar 

receiver. The mass flow rate that optimizes the overall (thermal of the receiver + 

thermodynamic of the power block) efficiency of the system was found to be between 1 and 

1.5 kg-s
-1

-MW
-1

, depending on the solar irradiation. For such overall optimum mass flow 

rates, the thermal efficiency of the receiver can be kept over 89% and the outlet temperature 



Pablo Fernández del Campo  Universidad de Valladolid 

123 

 

over 1250 K at all times from 7:30 AM to 4:00 PM. This outlet temperature is right on target 

to drive a gas turbine [60], which is the ultimate goal of the Small Particle Solar Receiver. 

Furthermore, the pressure drop is limited to 90 Pa even in the most unfavorable situation, 

which does not diminish the thermodynamic efficiency due to pressure drop between the 

compressor and the turbine (the expansion ratio through the turbine is essentially the same.) 

Radiative losses were proven to dominate over convective losses. In particular, emission 

from the window, emission from the air-particle mixture, back-scattered solar irradiation and 

emission from the inner part of the exterior wall (see Figure 2) are, in this order, the main 

loss mechanisms in the design employed for this parametric study. Nevertheless, the 

temperature of the window was imposed via boundary condition (1000 K in these parametric 

study), but in reality it will be lower [65] and the radiative losses due to emission from the 

window will be considerably reduced. 

A multidisciplinary design optimization of a 5 MWth Small Particle Solar Receiver, to 

be designed and tested under the U.S. DOE’s SunShot Initiative, was conducted later. The 

design space was explored through parametric studies and consisted of the geometry of both 

window and receiver, the optical (radiative) properties of the walls and the direction of the 

fluid flow with respect to the incoming solar irradiation. The cocurrent flow direction 

showed higher thermal efficiency than the countercurrent one both with and without particle 

oxidation, i.e., regardless of whether the receiver is actually operated by air (oxidation) or 

nitrogen (no oxidation). A mathematical proof of this result for air-driven receivers was 

provided as well. Furthermore, the temperature levels and residence time ensure that the 

particles are completely oxidized when they exit the solar receiver for either flow direction 

and for any of the three oxidation kinetics employed. The aluminum oxide (Al2O3) walls, 

which would also serve as insulation, showed the best compromise between wall 

temperature and thermal efficiency compared to the other three main types of radiative 

properties that can be employed. As for the window geometry, the receiver efficiency is 

higher with a 45º spherical-cap window than with an ellipsoidal window; while the wall 

temperature and pressure drop are virtually insensitive to its shape. In addition, the 45º 

spherical-cap window is much more inexpensive and easier to manufacture. Finally, the 

geometry of the receiver labeled as Design 2 was the best geometry analyzed as it 

maximizes the thermal efficiency and minimizes the wall temperature. 

Although interactions between design variables are not properly captured by parameter 

studies, it is thought that they are small in our design space and the conclusions inferred for 

each variable have general validity. At any rate, using Al2O3 walls, the so-called Design 2 

and the 45º spherical-cap window, the maximum wall temperature can be kept below 1350 

K and the thermal efficiency over 85% (for the operating conditions used in this parametric 

study) even with the countercurrent flow direction. It is possible, however, to raise the 

efficiency at the expense of the solar share by increasing the mass flow rate [84]. Using a 

further optimized geometry and the cocurrent flow direction, it is thought that the thermal 
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efficiency of the receiver can be increased to over 90%. This, in turn, would lead to a greater 

overall efficiency of the CSP plant than the state-of-the-art Rankine cycles employed in 

current commercial plants, due to the considerably higher thermodynamic efficiency of the 

higher-temperature gas turbine engine [85]. Finally, several ideas and considerations to 

further improve the design were presented and discussed as well. For example, it is 

advisable to locate the air-particle inlets in different axial positions of the exterior surface for 

several reasons, such as increasing the operational flexibility, improving the robustness of 

the design with respect to the oxidation kinetics, or avoiding no-particle zones near the walls 

(necessary to keep the wall temperature below material limits.) 
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Chapter 9 

Future Work 

Although a number of difficulties have been overcome and many results have been obtained 

in this work, the following lines of research and improvements to the current model are 

proposed. 

9.1. Parallelization of the MCRT method via GPU Computing 

A huge effort was made to speed up the Monte Carlo Ray Tracing code (variance reduction, 

efficient programming) so that it is currently optimized for single CPU execution. In fact, 

the CPU time to perform one MCRT iteration is over fifty times lower than the one required 

for the two-dimensional version of the model [19], even though one could expect the three-

dimensional MCRT to be around fifteen times more CPU demanding. Nevertheless, the 

Monte Carlo method still takes over 50% of the total CPU time and its parallelization would 

considerably speed up the computation. An alternative view is that a finer MCRT mesh 

could be used to improve the accuracy of the radiative heat transfer modeling. Moreover, 

after the parallelization of the Monte Carlo code, the parallel solver of ANSYS Fluent could 

be used to further reduce the computational time. 

By its own nature, Monte Carlo methods are highly parallelizable and have a high 

speed-up ratio, as defined by Amdahl’s law: 

  
 

      
 
 

   (9-1) 

Where   is the expected speedup,   is the portion of code susceptible to parallelization 

(measured as the fraction of CPU time before the parallelization) and   is the number of 

parallel threads. The value of   in Monte Carlo simulations is close to unity and the 

expected speedup is thereby close to  . In reality, the speedup of most parallel applications 

is worse than what is predicted by the Amdahl’s law due to the parallel overhead. 

In order to facilitate its eventual parallelization, the Monte Carlo Ray Tracing code was 

structured in different subroutines so that the parallel code (essentially) only requires 

introducing proper distribution and synchronization instructions. Perhaps the simplest way 

to parallelize the code would be to trace all the rays emitted from a particular Monte Carlo 

cell in the same thread, which would also easily avoid load imbalance between processors if 

a proper processor scheduling is used. 
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9.2. Couple the oxidation code to the whole model 

Once the oxidation model, which is currently being developed by Trent Martin –a 

graduate student in our group–, is ready to be used, it should be coupled to the software 

presented in this Proyecto Fin de Carrera. Once again, the MCRT code and the User-

Defined Functions were programmed to facilitate this eventual coupling. Note also that a 

new, more complex iterative solution procedure will be required when coupling the 

oxidation code, as the variation of the optical properties of the air-particle mixture (due to 

oxidation) between MCRT iterations will increase the amplitude of the numerical 

oscillations. As with the MCRT method, computing only a partially converged solution 

between CFD iterations and under-relaxing it will most likely be the best strategy. 

9.3. Couple the thermal window model to the whole software 

A numerical model to calculate conduction, convection and radiation heat transfer in the 

window of the receiver is currently being developed by Alex Whitmore, another graduate 

student in our group. After developing and validating the window model, it could be coupled 

to the software presented in this Proyecto Fin de Carrera to impose the thermal boundary 

condition on the window via User-Defined Function. The total convection heat transfer 

through the inner surface of the window would need to be computed via UDF as well, as it 

constitutes a boundary condition of the thermal window model. As for the iterative 

procedure, employing a partially converged solution for the temperature field of the window 

when the window model is executed and under-relaxing it would probably optimize the rate 

of convergence. Furthermore, the window model could be executed only every fifty or one 

hundred iterations of the CFD solver due to the relatively slight sensitivity of the receiver 

solution to the window temperature field.  

9.4. Employ Large Eddy Simulation (LES) for turbulence modeling 

While the thermal efficiency of the Small Particle Solar Receiver is virtually 

independent of the fluid flow features themselves, higher fidelity in the flow solution would 

improve the accuracy of the wall temperature prediction, which in turn would also modify 

the thermal efficiency. In this regard, Large Eddy Simulation (LES) would provide a more 

realistic turbulence modeling and thereby a better wall temperature estimate. On account of 

the extremely high CPU time required to perform a LES+MCRT simulation, Large Eddy 

Simulation has not been employed up to now. However, it would be an interesting 

improvement to the model, especially to evaluate the differences in the numerical solution 

using SST κ-ω and LES and to determine up to what extent the more CPU-efficient SST κ-ω 

turbulence model worsens the numerical results. 
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9.5. Further Design Optimization 

Once the oxidation code is ready and coupled to the whole model, a one-at-a-time 

optimization technique is proposed to conduct further design optimization. Post-optimality 

analysis (sensitivity analysis, uncertainty quantification) are also suggested to quantify the 

uncertainties of the model and test the robustness of the design respect to the oxidation 

kinetics, optical properties of the window, inlet air-particle mixture conditions (particle size 

and mass loading) and peaks of concentrated solar irradiation. 

Finally, since the solar irradiation that reaches the window from the heliostat field is not 

(directionally) axisymmetric
35

, an elliptical geometry for the solar receiver (with the largest 

principal axis in the horizontal direction) might reduce the wall temperature and increase the 

thermal efficiency. For that, the MCRT code and UDFs would need to be modified to 

accommodate such a non-axisymmetry. Note, however, that an elliptical geometry would 

increase the manufacturing costs of the receiver, which is an important factor when 

performing system optimization from a multidisciplinary approach. 

9.6. Thermal Stratification 

Buoyancy forces within the solar receiver dominate the fluid motion over pressure gradients 

in the radial and azimuthal directions. This implies that, if no action was taken, a strong 

thermal stratification in the receiver would occur, as has been demonstrated numerically. In 

order to solve this issue, it is proposed to inject the air-particle mixture into the solar 

receiver with a swirl component. Thus, the inertial forces –which wouldn’t be negligible 

anymore– would dominate the fluid motion and would mix the fluid flow. The pressure drop 

would increase due to the higher shear stress on the walls; although it would be still small 

and wouldn’t reduce the thermodynamic efficiency of the gas turbine due to pressure drop 

between the compressor and the turbine. Therefore, different inlet flow swirl levels and 

injection locations should be analyzed to study of how to prevent thermal stratification 

within the solar receiver. 

9.7. High Temperature Anti-Reflective Coatings 

The transmissivity of unpolarized light traveling from air to glass is given by Equations 9-2, 

while the reflectivity is simply      . 

 

 

                                                           
35

 The heliostat field of the National Solar Thermal Test Facility (where the 5 MWth Small Particle Solar 

Receiver will be located) spans 90º laterally and only 29º vertically when viewed from the top of the tower. 
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Since there are two interfaces between glass and air and radiation can be reflected back 

and forth within the glass an infinite number of times; the total transmissivity, reflectivity 

and absorptivity of the window (assuming    is small enough so that Equations 9-2 reduce 

to Fresnel equations. The conditions under which this hypothesis is acceptable are presented 

in [21]) is the sum of a geometric series, as expressed in Equations 9-3. 
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Based on these equations, it may seem that the transmissivity of the window only 

depends on the complex index of refraction of the glass (and the angle of incidence). 

However, two hypotheses were assumed when deriving Equations 9-3. First, interference 

effects were neglected (which is true when the glass thickness is much greater than the 

wavelength of the electromagnetic waves, as is true in regular windows.) Second, the index 

of refraction varies abruptly from the air to the glass. It is actually possible to take advantage 

of these two effects (interference and gradual variation of the refractive index) to increase 

the transmissivity, so that Equations 9-2 would be no longer valid. The first phenomenon is 

the one employed in current anti-reflective coatings and is accomplished by using thin 

coatings where interference occurs. The materials employed for these coatings suffer from 

thermal degradation and the state-of-the-art anti-reflective coatings cannot be utilized at the 

high temperatures present in the window of the Small Particle Solar Receiver. As for the 

second strategy, further details can be found, for example, in [90]. 

Since the majority of the losses of the solar receiver are due to reflection of incoming 

solar irradiation, new materials and technologies to improve the transmissivity of the 

window at high temperature would dramatically increase the efficiency of the receiver. 

Hence, it is proposed to simulate an ideal window with, say, transmissivity of 96% in the 

solar spectrum (a typical value for low-temperature glass coatings) in order to assess the 

benefits of high temperature glass coatings and determine future lines of research. 
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Appendix A 

Area of the two-dimensional cells of the Monte Carlo 

mesh 

CONICAL CELLS 

We can assume, without loss of generality, that the cell starts at       and the 

generatrix of the cone is given by Eq. A-1. 
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It should be noted that the previous equation is only valid for oblate spheroids (i.e. 

   ). A prolate spheroid window (   ) would lead to excessively high radiative losses 

and is not considered as an option for Small Particle Solar Receiver. 
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Appendix B 

Volume of the three-dimensional cells of the Monte Carlo 

mesh 

FLUID CELLS TYPE 2 

Cone – Cone: 
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And the volume: 
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FLUID CELLS TYPE 3 

Plane – Plane: 
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Ellipsoid – Plane: 
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Sphere – Ellipsoid: 
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Sphere – Plane: 
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Where: 
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Which reduces to the volume of a cylinder when         and        . 
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Appendix C 

Location of emission from two-dimensional Monte Carlo 

cells 

CONICAL CELLS 

r-coordinate: 
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Where the coordinate   represents the length of the generatrix. It can be assumed, 

without loss of generality, that the origin of the   coordinate is located at     . Hence, 
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Therefore: 
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Note that this is the same expression as for cylindrical fluid cells (Appendix D), which 

is due to the fact that both area and volume are proportional to       in cylindrical 

coordinates. 

z-coordinate: 
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SPHERICAL CELLS 

z-coordinate: 
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Or, equivalently, 
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Which can be rewritten as: 
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Therefore, the axial location of emission can be computed as: 
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Note, again, that the previous equation is only valid for oblate spheroids (   ). 

r-coordinate: 
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Appendix D 

Location of emission from three-dimensional Monte 

Carlo cells 

FLUID CELLS TYPE 2 

For cells Type 2, AA – BB means that the    face of the cell is an AA and the    face, a BB 

(AA and BB are geometrical shapes). 

Cone – Cone: 
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FLUID CELLS TYPE 3 

For cells Type 3, AA – BB means that the    face of the cell is an AA and the    face, a BB 

(AA and BB are geometrical shapes). 
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Ellipsoid – Ellipsoid: 
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z-coordinate: 
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Ellipsoid – Plane: 
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z-coordinate: 
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Sphere – Ellipsoid: 
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z-coordinate: 
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Sphere – Plane: 
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z-coordinate: 
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Note that all the equations in Appendices C and D are injective functions. Therefore, 

their inverses are single-valued functions and can be inverted unequivocally. 
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Appendix E 

Intersection between a ray and Monte Carlo mesh faces 

The equation of the line through which the ray travels is given by: 

            (E-1) 

Where         is the locus of the ray –characterized by the parameter    , which 

is such that         is the current location of the ray–  and   is a unit vector in the 

direction of the ray. 

DISTANCE LINE-SPHERE 

On account of the axisymmetry of the Small Particle Solar Receiver, only spheres with 

center at             need to be considered, i.e.,             
     where   is 

the radius of the sphere. The distance to the intersection,  , can be readily obtained as 

expressed in Eq. E-2. 
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DISTANCE LINE-ELLIPSOID 

Again, only axisymmetric ellipses with the center at            , Eq. E-3, need to be 

considered. 
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Where    is the size parameter and   is the shape parameter (  √  is used in all the 

simulations with an ellipsoidal window). The distance to intersection,  , is expressed in Eq. 

E-4. 
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Where the constants are defined as: 

             
                

         

     
    

      
    

  

DISTANCE LINE-CONE 

On the one hand, the distance between a point of the line through which the ray travels, 

    , and the    axis is: 
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 (E-5) 

On the other hand, the distance between a point of the cone,         , and the    axis 

only depends on the z-coordinate and can be expressed as: 
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           are the Cartesian coordinates of any point of the cone at             ; 

and            are the Cartesian coordinates of any point of the cone at             , 

where   denotes the two-dimensional conical face. 

The relation between   and   is: 

          (E-7) 

Therefore, the distance to the intersection point can be calculated as: 
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And: 
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In the degenerated case of a cylinder (a particular case of a cone) the previous constants 

are simplified to     and    . In order to prevent unnecessary computations, a new 

subroutine for the particular case of cylindrical surfaces has been created. 

It should be noted that for all the intersections described above (line-sphere, line-

ellipsoid and line-cone), there exist there possible situations depending on the sign of the 

discriminant   
       : 

1)   
          

The line does not intersect the surface. In this case the distance must be equaled to an 

arbitrarily big number (for modeling purposes) so that this is not the closest intersection of 

the ray with one of the cell faces. 

2)   
          

The line is tangent to the surface. Since the ray does not enter the neighbor cell but 

rather it remains in the current cell, the distance is equaled to an arbitrarily big number so 

that this is not the closest intersection. 

3)   
          

The line is secant to the surface and intersects is twice. The minimum positive root is to 

be chosen. If both roots are negative, there is no intersection in the positive direction and the 

distance should be equaled to an arbitrarily big number as in the previous two cases. 

Note, finally, that only two intersections can exist for all the faces present in the Monte 

Carlo mesh since the mathematical surface is the boundary of a convex set (i.e.        

where   is the Gaussian curvature or, in other words,                  for   and   the first 

and second fundamental forms, respectively.) Rare exceptions may appear when dealing 

with ruled surfaces (planes, cylinders and cones in the Monte Carlo mesh) if the line through 

which the ray travels happens to be part of the surface. In such unlikely situations the tracing 

of the ray is stopped without noticeable loss of accuracy in the numerical solution. 
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Appendix F 

Validation of the Monte Carlo Software 

TEST 1: 

Description: 

Surface to surface radiation heat transfer between two black, parallel, infinite plates at 

the same temperature. 

Simulation conditions: 

- Left and right plates are both blackbodies at 500 K. 

- Distance between plates: 0.1 m. 

- Nonparticipating medium between the plates. 

Expected results: 

- The net radiative balance between both plates must be exactly zero. 

- The radiative heat flux should be approximately zero in all the cells. Nevertheless, small 

oscillations around zero are expected due to the statistical nature of the Monte Carlo 

method. 

Simulation results: 

Left Plate (W/m
2
) 

Radial 

position (m) 

Angular 

Division #1 

Angular 

Division #2 

Angular 

Division #3 

Angular 

Division #4 

0.00-0.50 4.4465 -0.5644 -3.4587 1.4313 

0.50-1.00 0.7680 -1.1116 -0.9158 0.8025 

1.00-1.50 0.0092 -0.7303 0.9112 -1.1254 

1.50-2.00 0.0930 0.4888 -1.0100 1.8032 

2.00-2.50 0.7081 0.3705 -1.1596 -1.2364 

2.50-3.00 0.1526 0.0594 -0.1141 -0.6296 

3.00-3.50 0.3790 0.4413 -0.0970 0.4100 

3.50-4.00 -0.0278 -0.2734 0.4212 0.4410 

4.00-4.50 -0.7400 -0.1200 -0.1081 -0.7035 

4.50-5.00 0.6095 0.0855 -0.5209 0.7497 

TOTAL 0.000 W 
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Right Plate (W/m
2
) 

Radial 

position (m) 

Angular 

Division #1 

Angular 

Division #2 

Angular 

Division #3 

Angular 

Division #4 

0.00-0.50 0.2765 0.5472 1.7538 -0.7315 

0.50-1.00 0.6710 -1.4946 -0.7824 -2.2904 

1.00-1.50 0.2436 0.7459 -0.0213 0.3980 

1.50-2.00 0.2670 -0.0757 0.4481 1.7506 

2.00-2.50 -0.6864 -0.5859 0.4070 -0.0445 

2.50-3.00 0.1327 0.1319 -0.1775 0.5370 

3.00-3.50 0.2133 0.1681 -0.2466 -0.1777 

3.50-4.00 0.1839 -0.6443 -0.7800 0.7378 

4.00-4.50 -0.0640 -0.3246 0.3498 -0.2036 

4.50-5.00 0.1435 0.1338 -0.3077 0.0205 

TOTAL 0.000 W 

Table 22 – Radiative heat flux through the left (top) and right (bottom) plates in Test #1 of the Monte Carlo 

method validation. 

The greater uncertainty in the cells of the first radial division is expected since, on 

account of their smaller size, fewer rays contribute to their radiative heat flux, which in turn 

increases the variance of the solution. This result holds for the following tests as well. 

TEST 2: 

Description: 

Surface to surface radiation heat transfer between two black, parallel, infinite plates at 

different temperatures. 

Simulation conditions: 

- Left plate: Blackbody at 800 K. 

- Right plate: Blackbody at 500 K. 

- Distance between plates: 0.1m 

- Nonparticipating medium between the plates. 

Analytical solution: 
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Simulation results: 

Left Plate  (W/m
2
) 

Radial 

position (m) 

Angular 

Division #1 

Angular 

Division #2 

Angular 

Division #3 

Angular 

Division #4 

0.00-0.50 -19682.10 -19680.41 -19687.90 -19683.71 

0.50-1.00 -19679.68 -19680.82 -19683.26 -19680.45 

1.00-1.50 -19683.30 -19680.54 -19682.33 -19682.80 

1.50-2.00 -19684.13 -19682.79 -19682.58 -19679.65 

2.00-2.50 -19681.48 -19681.30 -19682.27 -19681.14 

2.50-3.00 -19682.97 -19682.14 -19682.26 -19682.08 

3.00-3.50 -19680.66 -19683.61 -19680.48 -19680.66 

3.50-4.00 -19680.14 -19681.45 -19683.56 -19681.41 

4.00-4.50 -19683.43 -19682.55 -19681.20 -19683.02 

4.50-5.00 -19681.80 -19681.30 -19682.70 -19681.88 

TOTAL -1,545,817.39W 

 

Right Plate (W/m
2
) 

Radial 

position (m) 

Angular 

Division #1 

Angular 

Division #2 

Angular 

Division #3 

Angular 

Division #4 

0.00-0.50 19681.12 19662.00 19683.86 19660.16 

0.50-1.00 19682.07 19684.50 19683.56 19687.26 

1.00-1.50 19680.25 19672.94 19684.69 19683.48 

1.50-2.00 19688.63 19685.45 19684.78 19688.30 

2.00-2.50 19678.69 19679.33 19681.94 19677.86 

2.50-3.00 19680.88 19682.29 19680.60 19682.27 

3.00-3.50 19681.81 19682.36 19683.21 19686.49 

3.50-4.00 19683.17 19678.29 19677.13 19686.08 

4.00-4.50 19683.41 19683.63 19682.02 19678.97 

4.50-5.00 19681.66 19681.88 19680.72 19682.75 

TOTAL 1,545,817.39W 

Table 23 – Radiative heat flux through the left (top) and right (bottom) plates in Test #2 of the Monte Carlo 

method validation. 

TEST 3: 

Description: 

Surface to surface radiation heat transfer between two black, coaxial, infinite cylinders 

at the same temperature. 

Simulation conditions: 

- Inner cylinder: Blackbody at          and         . 

- Outer cylinder: Blackbody at          and         . 
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- Nonparticipating medium between the cylinders. 

Analytical solution: 

 ̇               ̇       ⁄  

Small discrepancies between the analytical solution and the simulation results are 

expected not only for the local radiative heat flux on each cell (as in Tests #1 and #2) but 

also for the total radiative heat transfer: While in the radiation exchange between two 

parallel plates all the rays emitted by one of them reach the other, in the radiation heat 

exchange between coaxial cylinders (Test #3 and #4) not all the rays emitted by the outer 

cylinder reach the inlet cylinder. Actually, this ratio is a random variable of mean 0.50 (since 

the radius ratio is 2:1) and a certain uncertainty in the local radiative heat flux on each cell is 

expected. 

Simulation results: 

  Inner Cylinder (W/m
2
) 

Axial Position 

(m) 

Angular 

Division #1 

Angular 

Division #2 

Angular 

Division #3 

Angular 

Division #4 

0.00-1.00 1.1537 -1.1875 -0.6566 -0.2259 

1.00-2.00 -1.7959 -0.0516 1.0780 2.5878 

2.00-3.00 -1.2885 4.2909 -0.0442 -2.4468 

3.00-4.00 -1.2197 -0.7730 2.5764 1.6228 

4.00-5.00 0.9576 -1.9244 -0.4725 0.1187 

5.00-6.00 0.8968 1.3424 1.1870 1.4754 

6.00-7.00 1.1141 -2.7484 -1.1061 2.3046 

7.00-8.00 -0.6417 -0.3647 -0.4805 -0.9014 

8.00-9.00 0.7288 3.3436 -0.0659 0.2643 

9.00-10.00 0.5539 1.6423 1.4851 -1.0683 

TOTAL 1.7688 W 

 

Outer Cylinder (W/m
2
) 

Axial Position 

(m) 

Angular 

Division #1 

Angular 

Division #2 

Angular 

Division #3 

Angular 

Division #4 

0.00-1.00 1.2472 -0.1568 0.1032 0.0324 

1.00-2.00 -1.7681 0.7282 0.8885 -0.3461 

2.00-3.00 -0.4275 -0.0077 0.1729 0.3033 

3.00-4.00 -2.5010 0.5548 -0.2916 -0.3340 

4.00-5.00 -0.6732 -0.6981 -1.1792 1.5938 

5.00-6.00 0.0946 -0.4931 0.1089 -0.3079 

6.00-7.00 -0.4923 1.6532 -0.2494 -0.8122 

7.00-8.00 0.3383 1.5565 -0.0510 -1.2704 

8.00-9.00 1.0577 0.5396 -2.1082 -0.4969 
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9.00-10.00 -0.4556 -0.0321 -0.4008 -1.0502 

TOTAL -1.7688 W 

Table 24 – Radiative heat flux through the inner (top) and outer (bottom) cylinders in Test #3 of the Monte 

Carlo method validation. 

TEST 4: 

Description: 

Surface to surface radiation heat transfer between two black, coaxial, infinite cylinders 

at different temperatures. 

Simulation conditions: 

- Inner cylinder: Blackbody at          and         . 

- Outer cylinder: Blackbody at          and         . 

- Nonparticipating medium between the cylinders. 

Analytical solution: 

 ̇  (
    

  
 

             

         
  

    

  

  

  
)

  

   (  
    

 )               

 ̇                ⁄  

 ̇              ⁄  

Like in Test #3, small discrepancies between the analytical solution and the simulation 

results are expected for both the radiative heat flux and the total radiative heat transfer. 

Simulation results: 

Inner Cylinder (W/m
2
) 

Axial Position 

(m) 

Angular 

Division #1 

Angular 

Division #2 

Angular 

Division #3 

Angular 

Division #4 

0.00-1.00 -19671.23 -19686.06 -19674.89 -19692.54 

1.00-2.00 -19690.06 -19687.54 -19680.27 -19685.13 

2.00-3.00 -19681.53 -19682.08 -19673.38 -19678.94 

3.00-4.00 -19673.92 -19674.54 -19685.58 -19688.49 

4.00-5.00 -19684.79 -19684.02 -19676.58 -19685.61 

5.00-6.00 -19684.67 -19666.16 -19681.79 -19670.96 

6.00-7.00 -19686.04 -19685.72 -19683.88 -19669.80 

7.00-8.00 -19680.16 -19687.49 -19676.69 -19688.70 

8.00-9.00 -19672.26 -19685.36 -19669.15 -19681.49 

9.00-10.00 -19677.62 -19681.34 -19690.77 -19694.81 

TOTAL -123,661.26 W 
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Outer Cylinder (W/m
2
) 

Axial Position 

(m) 

Angular 

Division #1 

Angular 

Division #2 

Angular 

Division #3 

Angular 

Division #4 

0.00-1.00 9842.10 9843.71 9839.16 9842.10 

1.00-2.00 9836.38 9845.41 9842.06 9842.55 

2.00-3.00 9844.32 9835.58 9841.87 9842.24 

3.00-4.00 9838.48 9843.02 9834.37 9836.34 

4.00-5.00 9850.09 9835.66 9846.07 9838.53 

5.00-6.00 9839.26 9835.51 9835.15 9837.03 

6.00-7.00 9846.92 9836.38 9838.38 9845.11 

7.00-8.00 9834.70 9845.37 9838.57 9844.15 

8.00-9.00 9835.89 9837.27 9842.62 9840.39 

9.00-10.00 9843.48 9847.21 9840.01 9842.55 

TOTAL 123,661.26 W 

Table 25 – Radiative heat flux through the inner (top) and outer (bottom) cylinders in Test #4 of the Monte 

Carlo method validation. 

TEST 5: 

Description: 

Radiation heat transfer between two black, parallel, infinite plates at different 

temperatures surrounding a participating, gray medium [51]. 

Simulation conditions: 

- Left plate: Blackbody at 800 K. 

- Right plate: Blackbody at 500 K. 

- Emission, absorption, non-scattering gray medium (optical thicknesses τL=0.5 and 2.0 

are tested.) 

- The medium is in radiative equilibrium, i.e.        ∫     
  

  . 

Analytical solution: 

      
 

 
[      ∫     

     |    |    

  

 

] (F-1) 

Where       
        

 

  
    

  is the dimensionless emissive power and       ∫       

  

 

 
 

is the exponential integral of order n. 

Simulation results: 

Figure 18 in Chapter 3 shows the dimensionless emissive power distribution for both 

the analytical solution and the in-house Monte Carlo method. 
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TEST 6: 

Description: 

Radiation heat transfer between two black, coaxial, infinite cylinders at different 

temperatures surrounding a participating, gray medium [53]. 

Simulation conditions: 

- Radius ratio 10:1. 

- Inner cylinder: Blackbody at 800 K. 

- Outer cylinder: Blackbody at 500 K. 

- Emission, absorption, non-scattering gray medium (optical thicknesses τL=0.1, 2.0 and 

10.0 are tested.) 

- The medium is in radiative equilibrium. 

Analytical solution: 

The analytical solution in cylindrical coordinates is rather involved and will not be 

reproduced here. The “exact” Monte Carlo solution was found by Perlmutter and Howell 

[53] and this is the solution with which the results of our in-house Monte Carlo method will 

be compared. 

Simulation results: 

Figure 33 shows the dimensionless emissive power distribution for both our in-house 

Monte Carlo method and the benchmark by Perlmutter and Howell [53]. 

 
Figure 33 – Dimensionless emissive power distribution in the gas (Test #6 of the Monte 

Carlo method validation.) 
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Appendix G 

Closure coefficients and auxiliary relations of the SST k-

ω Turbulence Model 

Generation of turbulence kinetic energy due to mean velocity gradients: 

 ̃                   
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Turbulent eddy viscosity: 
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Turbulent Prandtl number for   and  : 
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On account of the high Reynolds number inside the Small Particle Solar Receiver, the 

low-Reynolds-number correction to damp the turbulent viscosity is not employed and 

    .  

Model constants: 
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Appendix H 

Sensitivity analysis of the thermal absorption thickness of 

the walls 

When electromagnetic waves reach opaque bodies, they only penetrate a few Å (metals) or 

μm (dielectrics) before they are completely absorbed. Similarly, only the radiation emitted 

by a very thin layer near the surface can actually go outside of the material. Therefore, all 

the radiation heat transfer between opaque bodies, like metals or ceramic, and their 

surroundings occurs in a very thin layer next to the surface. However, on account of the 

domain discretization in the CFD model, it is not possible to concentrate all the radiative 

heat transfer in an arbitrarily thin layer and the radiative heat flux computed by the Monte 

Carlo method needs to be distributed in a layer of thickness  , where   is greater than the 

mesh size. 

Hence, the following question should be elucidated: For a given net radiative heat flux 

on an opaque body and assuming it is uniformly distributed over a layer of thickness L, how 

exact is the average temperature in that layer compared to the exact solution (i.e. when the 

energy is concentrated in an arbitrarily thin layer,    )? 

This problem will be reduced to a one-dimensional heat transfer problem, which is 

appropriate for the goal pursued with this study. The total thermal resistance of the wall 

(including the insulation) can be split up into three serial thermal resistances: 

1.   : Thermal resistance due to exterior convection and conduction in the entire wall 

except the layer of thickness L in which the radiative heat flux is supposed to be 

uniformly distributed. Its equivalent convective heat transfer coefficient will be denoted 

by   . 

2.   : Thermal resistance of the layer in which the radiative heat flux is supposed to be 

uniformly distributed (with thickness  ). 

3.   : Thermal resistance due to interior convection. Its equivalent convective heat 

transfer coefficient will be denoted by   . 

Since only the temperature profile in the layer in which the radiative heat flux is 

supposed to be uniformly distributed needs to be known, the governing Ordinary 

Differential Equation will be only solved in the domain        ; while    will be used to 

impose a proper boundary condition at    . Moreover, the cylindrical wall can be 

approximated by a plane wall since        ⁄ . Further assuming constant thermal 
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conductivity and neglecting the radiative heat transfer between the outer surface and the 

atmosphere, the problem can be written as: 

  

   

   
                  

  

  

  
      (        )        

   

  

  
   (        )        

 

(H-1) 

Where    
  

 
 and 

 

     
 

 

     
 

 

  
. 

The solution of the previous boundary value problem is: 
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          (             )

                     
 

 

(H-2) 

Therefore, the average temperature in       –the value to be employed again by the 

Monte Carlo code– is: 

〈 〉    
∫        

 

 

∫   
 

 

  
 

 

  

  
  

 

 
     (H-3) 

The actual temperature of the inner surface of the wall can be readily calculated by 

taking the limit when   is arbitrarily small: 

      
   

〈 〉       
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(H-4) 

The exact inner temperature    can also be easily obtained considering that, in the limit 

   , it is a serial heat transfer problem between a surface at      and two media at 

temperatures        and        with convective heat transfers    and   , respectively: 
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 ̇    (         )    (         )
      
→     

       

     

        

       

  

        

 
  

        

 
(H-5) 

Finally, the ratio between the average temperature using a thickness   and the actual 

temperature of the inner surface of the wall,                    ⁄ , is: 
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(H-6) 

 

Figure 34 – Temperature ratio,                    ⁄ , in stainless steel walls (top) and zirconia walls 

(bottom). Note the different scale in the x-axis. 
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Figure 35 – Temperature profile throughout the layer of thickness   in stainless steel walls (top) and zirconia 

walls (bottom). Note the different scale in the x-axis and the different thicknesses shown. 

It should also be noted that the value of      , and therefore the thickness of insulation, 

can be selected to maintain the thermal losses through the wall of the receiver below a 

certain target level. Figure 34 shows the ratio      for stainless steel (top) and zirconia walls 

(bottom). For a maximum error of 1% in the estimate of the emissive power (        ), 

the thickness of the layer should be not greater than 3 cm for stainless steel walls and not 

greater than 3 mm for zirconia walls. 

Further analysis of the temperature profile in the layer of thickness   (Figure 35) reveals 

that the inner wall temperature is approximately equal to the exact solution regardless the 



Pablo Fernández del Campo  Universidad de Valladolid 

159 

 

thickness. This, which occurs due to the fact that      <<    for the range of   considered, 

implies that thicker layers are acceptable as long as only the CFD cells whose centroid is 

closer than a distance ε to the inner wall surface (around 1 cm for stainless steel and 1 mm 

for zirconia) are considered when averaging the temperature. Note, finally, that the CFD grid 

must be so that at least the centroid of the first row of wall cells is closer than a distance 

  from the inner surface. 
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Appendix I 

Mathematical Model of the Conservative Interpolation 

Scheme for the Source Term 

The interpolation scheme employed is a multi-linear interpolation method, i.e., the radiative 

source term will be a hyperbolic paraboloid in                  ] that interpolates the 

eight neighbor Monte Carlo cells –            – multiplied by a proper constant – – so 

that the total interpolated source term exactly matches the actual value: 

                        (I-1) 

It is convenient to introduce the dimensionless variables shown in Table 26. This way, 

the resulting equations for cells Type 2 and 3 (recall the nomenclature for the fluid cells 

introduced in Section 3.4) can be expressed in the same (and more compact) manner.  

Cells Type 2 Cells Type 3 

 ̃    
    

  
 

 ̃    
    

  
 

 ̃      
       

     
 

 ̃      
       

     
 

 ̃    
    

  
 

 ̃    
    
  

 

Table 26 – Dimensionless variables employed for the interpolation function. 

The interpolation function in dimensionless variables takes the same form for cells Type 

1, 2 and 3: 

 ̃  ̃  ̃  ̃               ̃          ̃          ̃                ̃ ̃

               ̃ ̃                ̃ ̃

                           ̃ ̃ ̃] 
(I-2) 

Where the value of the constant   is such that the total interpolated source term 

(energy) exactly matches the actual value. The total interpolated source term,  , can be 

readily computed by integration: 
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 Cells Type 2: 

  ∫ ∫ ∫                    

     

     

  

  

  

  

 ∫∫∫ ̃  ̃  ̃  ̃                 ̃            ̃
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(I-3) 

 Cells Type 3: 

  ∫ ∫ ∫                    

     

     

  

  

  

  

 ∫∫∫  ̃  ̃  ̃  ̃              ̃]  |
        

   ̃  ̃  ̃ 
|    ̃   ̃   ̃

 

 

 

 

 

 

 

(I-4) 

For cells Type 1 either expression applies as they are just a particular case of both cells 

Type 2 and 3. The Jacobian of the transformation is: 

 Cells Type 2: 

        

   ̃  ̃  ̃ 
 (

    
    

                            ̃                              ̃
) (I-5) 

 Cells Type 3: 

        

   ̃  ̃  ̃ 
 (

                            ̃                              ̃
    
    

) (I-6) 

And its determinant: 

 Cells Type 2: 

|
        

   ̃  ̃  ̃ 
|                               ̃]       (I-7) 

 Cells Type 3: 

|
        

   ̃  ̃  ̃ 
|                               ̃]       (I-8) 
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Therefore, 

 Cells Type 2: 

  ∫∫∫             ̃          ̃          ̃                ̃ ̃
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(I-9) 

 Cells Type 3: 
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(I-10) 

The previous two integrals take the form          , where the only difference is 

the expression of the constant   : 
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(I-11) 

And analogously for cells Type 3. 

Finally,   is such that the integral of the interpolation function exactly matches the 

actual radiative source term in the interpolation zone: 

  
∑    ̆ 

 
   

      
 (I-12) 
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With: 
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(I-13) 

Therefore, the interpolation function can be readily computed as: 
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(I-14) 

Or, in dimensionless variables: 

 ̃  ̃  ̃  ̃  
∑    ̆ 

 
   

      
            ̃          ̃          ̃                ̃ ̃

               ̃ ̃                ̃ ̃

                           ̃ ̃ ̃] 

 

(I-15) 

 

 


